Solveeit Logo

Question

Question: The vapor pressure of ether (molecular mass=74) is 442 mm Hg at 293 K. If 3g of a compound A are dis...

The vapor pressure of ether (molecular mass=74) is 442 mm Hg at 293 K. If 3g of a compound A are dissolved in 50 g of ether at this temperature, the vapor pressure falls to 426 mm Hg. Calculate the molecular mass of A assuming that the solution of A is very dilute.
A. 121  gmol1121\;{\rm{gmo}}{{\rm{l}}^{ - 1}}
B. 122  gmol1122\;{\rm{gmo}}{{\rm{l}}^{ - 1}}
C. 123  gmol1123\;{\rm{gmo}}{{\rm{l}}^{ - 1}}
D. 124  gmol1124\;{\rm{gmo}}{{\rm{l}}^{ - 1}}

Explanation

Solution

We know that colligative properties are the properties which depend on the number of solute particles to the total number of particles in the solution not considering the solute's nature.

Complete answer:
If a solution contains non-volatile solute, the lowering of vapor pressure depends on the sum of mole fraction of different solutes. So, the mathematical equation representing the condition is,

Δp1p10=x2\dfrac{\Delta p_1}{{p_1}^0}=x_2
p10p1p10=x2\dfrac{{p_1}^0- p_1}{{p_1}^0}=x_2 …… (1)

Where, Δp1\Delta {p_1} is lowering of vapor pressure, p10p_1^0 is the vapor pressure of pure solvent, p1{p_1} of solution and x2{x_2} is mole fraction of solute.

Now, come to the question. Given that vapor pressure of ether is 442 mm Hg. When a solute A is added to ether, vapor pressure falls to 426 mm Hg. So, p10=442  mm  Hgp_1^0 = 442\;{\rm{mm}}\;{\rm{Hg}} and p1=426  mm  Hg{p_1} = 426\;{\rm{mm}}\;{\rm{Hg}}

Substitute the value of p10p_1^0 and p1{p_1} in equation (1).

442  mm  Hg426  mm  Hg442=xA\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442}} = {x_A} ….. (2)

Now, write the mole fraction part of the above equation. Here, solute A of 3 g is added to 50 g ether. So, mole fraction of the solute A is,

xA=Moles  of  AMoles  of  A+Moles  of  ether{x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}} + {\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}} …… (3)

As solution of A is dilute, moles of A <<< moles of ether

So, Moles  of  A+Moles  of  etherMoles  of  ether{\rm{Moles\;of\;A}} + {\rm{ Moles\;of\;ether}} \approx {\rm{Moles\;of\; ether}}

So, equation (3) becomes,

xA=Moles  of  AMoles  of  ether{x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}}

We know that moles can be calculated by dividing mass by molar mass. So, the above equation becomes,

xA=Moles  of  AMass  of  etherMolecularMass  of  ether{x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}

Now, we substitute xA{x_A} in equation (2).

442  mm  Hg426  mm  Hg442  mm  Hg=Moles  of  AMass  of  etherMolecularMass  of  ether\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}

Now, put the mass of ether 50 g and molecular mass of ether 74  g  mol174\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}in the above equation and solve for moles of A.

442  mm  Hg426  mm  Hg442  mm  Hg=Moles  of  A50  g74  g  mol116442=Moles  of  A0.6756  mol\begin{array}{c}\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{50\;{\rm{g}}}}{{74\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}}}}}\\\\\dfrac{{16}}{{442}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{0.6756\;mol}}\end{array}

Now, calculate moles of A.

Moles  ofA=16×0.6756442mol=0.0244  mol\begin{array}{c}{\rm{Moles}}\;{\rm{of A}} = \dfrac{{16 \times 0.6756}}{{442}}{\rm{mol}}\\\\{\rm{ = 0}}{\rm{.0244}}\;{\rm{mol}}\end{array}

So, moles of A in the solution is 0.0244 mol.

Now, we use the formula of moles to calculate the molecular mass of A.

Number  of  moles=MassMolarMass{\rm{Number}}\;{\rm{of}}\;{\rm{moles = }}\dfrac{{{\rm{Mass}}}}{{{\rm{Molar \,Mass}}}}

We rearrange the above formula and put the value of moles of A and mass of A.

MolarMassofA=Mass  ofAMoles  of  A =3  g0.0244  mol =122.95gmol1 =123  gmol1\begin{array}{c}{\rm{Molar \,Mass\, of\, A}} = \dfrac{{{\rm{Mass}}\;{\rm{of}}\,{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}\\\ = \dfrac{{3\;{\rm{g}}}}{{0.0244\;{\rm{mol}}}}\\\ = 122.95\,{\rm{gmo}}{{\rm{l}}^{ - 1}}\\\ = 123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}\end{array}

Therefore, molecular mass of A is 123  gmol1123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}. Hence, option C is correct.

Note: It is to be noted that, for dilute solution the moles of solute is neglected in the denominator of the lowering of vapour pressure equation. So, the equation becomes p10p1p10=n2n1\dfrac{{p_1^0 - {p_1}}}{{p_1^0}} = \dfrac{{{n_2}}}{{{n_1}}}, where n2{n_2} is moles of solute and n1{n_1} moles of solvent.