Solveeit Logo

Question

Question: The vapor density of a mixture containing \(NO_2\) and \(N_2O_4\) is \(27.6\).The mole fraction of \...

The vapor density of a mixture containing NO2NO_2 and N2O4N_2O_4 is 27.627.6.The mole fraction of NO2NO_2 in the mixture will be
A.0.20.2
B.0.40.4
C.0.60.6
D.0.80.8

Explanation

Solution

Vapor density is defined as the weight of a volume of pure vapor or gas compared to an equal volume of dry air at the same temperature. Vapor density is obtained by dividing the molecular weight of the vapor by the average molecular weight of dry air, so it is unitless.

Formula used: Ideal gas law equation is given by PV = nRT{\text{PV = nRT}}
where {\text{P }}- Pressure
V{\text{V}}- Volume
T{\text{T}}- Temperature
n{\text{n}}-Number of moles
R{\text{R}}-Universal gas constant
Hence the vapor density can be calculated using the equation
Vapor density = (PMRT)gas(PMRT)referencegas\dfrac{{\left( {\dfrac{{{\text{PM}}}}{{{\text{RT}}}}} \right)\,{\text{gas}}}}{{\left( {\dfrac{{{\text{PM}}}}{{{\text{RT}}}}} \right)\,{\text{reference}}\,{\text{gas}}}}

Complete step by step solution:
Vapor density can be calculated using ideal gas law
PV = nRT{\text{PV = nRT}}
Relative density for a gas is given by,
Relative density= DensityofgasDensityofreferencegas\dfrac{{{\text{Density}}\,{\text{of}}\,{\text{gas}}}}{{{\text{Density}}\,{\text{of}}\,{\text{reference}}\,{\text{gas}}}} ( at constant temperature and pressure)
Density of gas = givenweightofgasvolumeofgas\dfrac{{{\text{given}}\,\,{\text{weight}}\,{\text{of}}\,{\text{gas}}}}{{{\text{volume}}\,{\text{of}}\,{\text{gas}}}} = mV\dfrac{{\text{m}}}{{\text{V}}}
From ideal gas equation we get the volume of gas
That is V = nRTP{\text{V}}\,{\text{ = }}\,\dfrac{{{\text{nRT}}}}{{\text{P}}}.
By applying the formula of volume , we get
Vapor density = mPnRT\dfrac{{{\text{mP}}}}{{{\text{nRT}}}} , where MolecularweightM = mn{\text{Molecular}}\,{\text{weight}}\,{\text{M = }}\,\dfrac{{\text{m}}}{{\text{n}}}
So that we can rearrange the equation as
Density = PMRT\dfrac{{{\text{PM}}}}{{{\text{RT}}}}
Hence Relative vapor density can be written as
Vapor density = (PMRT)gas(PMRT)referencegas\dfrac{{\left( {\dfrac{{{\text{PM}}}}{{{\text{RT}}}}} \right)\,{\text{gas}}}}{{\left( {\dfrac{{{\text{PM}}}}{{{\text{RT}}}}} \right)\,{\text{reference}}\,{\text{gas}}}}
At constant temperature and pressure we get
Vapor density = MgasMreferencegas\dfrac{{{\text{M}}\,{\text{gas}}}}{{{\text{M}}\,{\text{reference}}\,{\text{gas}}}}
We are using H2H_2 as the reference gas so the molecular weight is 2.
So that the equation becomes, vapor density= Mgas2\dfrac{{{\text{M}}\,\,{\text{gas}}}}{{\text{2}}} = Massofnmoleculesofgas2\dfrac{{{\text{Mass}}\,{\text{of}}\,{\text{n}}\,{\text{molecules}}\,{\text{of}}\,{\text{gas}}}}{{\text{2}}}
Here we have to calculate the mole fraction of NO2NO_2 In a mixture containing NO2NO_2 and N2O4N_2O_4 .where the vapor density is given by 27.627.6
Vapor density = Molecularweight2\dfrac{{{\text{Molecular}}\,{\text{weight}}\,}}{{\text{2}}}
Vapor density = 27.627.6 , so Molecular weight = vapordensity×2{\text{vapor}}\, \text{density} \times 2
Molecular weight= 27.6×2=55.227.6 \times 2\, = \,55.2
Now consider % of NO2NO_2 is x{\text{x}} and that of N2O4N_2O_4 is (1 - x)\left( {{\text{1 - x}}} \right) . because sum of mole fractions of all components is equal to one. That is if a solution contains two components having mole fractions x1{x_1}\,and x2{x_2} then x1+x2=1{x_1} + {x_2} = 1.
So here Molecular weight of mixture containing the NO2NO_2 and N2O4N_2O_4 can be
M = (x×MolarmassofNO2) + ((1 - x)×Molar massofN2O4){\text{M = }}\left( {{\text{x}}\,\times \,{\text{Molar}}\,{\text{mass}}\,{\text{of}}\,{\text{N}}{{\text{O}}_{\text{2}}}} \right){\text{ + }}\left( {\left( {{\text{1 - x}}} \right) \times \,{\text{Molar mass}}\,{\text{of}}\,{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}} \right)= 55.255.2
Molecular mass of NO2NO_2 = 4646
Molecular mass of N2O4N_2O_4 = 9292
x(46) + (1 - x)92\,\,\,{\text{x}}\left( {{\text{46}}} \right)\,{\text{ + }}\left( {{\text{1 - x}}} \right)\,{\text{92}} = 55.2
By solving above equation we get, x{\text{x}}= 0.80.8

The mole fraction of NO2NO_2 in the mixture of NO2NO_2 and N2O4N_2O_4 is 0.80.8

Note: The value weight of a gas or vapor compared to air , which has an arbitrary value of one . If a gas has a vapor density of less than one it will generally rise in air. If the vapor density is greater than one gas will generally sink in air.