Solveeit Logo

Question

Question: The van’t hoff factor is 3 for A. \[{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] with ...

The van’t hoff factor is 3 for
A. Na2SO4{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}} with 50%50\% dissociation
B. Al2(SO4)3{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}
C. CaCl2{\rm{CaC}}{{\rm{l}}_2} with 80%80\% dissociation
D. K4[Fe(CN)6]{{\rm{K}}_{\rm{4}}}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right] with 50%50\% dissociation

Explanation

Solution

The degree of dissociation is the fraction of the original solute molecules that have dissociated. For dissociation in the absence of association, the van 't Hoff factor is I>1{\rm{I > 1}}. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
The extent to which a substance associates or dissociates in a solution is described by the Van’t Hoff factor. For example, when a non-electrolytic substance is dissolved in water, the value of i is generally 1. However, when an ionic compound forms a solution in water, the value of i is equal to the total number of ions present in one formula unit of the substance.
For example, the Van’t Hoff factor of CaCl2{\rm{CaC}}{{\rm{l}}_{\rm{2}}} is ideally 3, since it dissociates into one Ca2+{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}} ion and two Cl{\rm{C}}{{\rm{l}}^{\rm{-}}} ions. However, some of these ions associate with each other in the solution, leading to a decrease in the total number of particles in the solution.

Complete step by step answer:
A. Na2SO4{\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}} with 50%50\% dissociation
Na2SO42Na++SO42 10.5              2×0.5      0.5 {\rm{N}}{{\rm{a}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}} \to {\rm{2N}}{{\rm{a}}^{\rm{ + }}}{\rm{ + SO}}_{\rm{4}}^{{\rm{2 - }}} \\\ {\rm{1 - 0}}{\rm{.5\;\;\;\;\;\;\;2 \times 0}}{\rm{.5\;\;\;0}}{\rm{.5}}
Van't Hoff factor =10.5+2×0.5+0.5=2{\rm{ = 1 - 0}}{\rm{.5 + 2 \times 0}}{\rm{.5 + 0}}{\rm{.5 = 2}}

B. Al2(SO4)3{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}
Al2(SO4)32Al3++SO42{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}} \to {\rm{2A}}{{\rm{l}}^{{\rm{3 + }}}}{\rm{ + SO}}_{\rm{4}}^{{\rm{2 - }}}
I=5{\rm{I = 5}}

C. CaCl2{\rm{CaC}}{{\rm{l}}_2} with 80%80\% dissociation
CaCl2Ca2++2Cl 10.8          0.8              2×0.8 {\rm{CaC}}{{\rm{l}}_{\rm{2}}} \to {\rm{C}}{{\rm{a}}^{{\rm{2 + }}}}{\rm{ + 2C}}{{\rm{l}}^{\rm{ - }}} \\\ {\rm{1 - 0}}{\rm{.8\;\;\;\;\;0}}{\rm{.8\;\;\;\;\;\;\;2 \times 0}}{\rm{.8}}
Van't Hoff factor =0.2+0.8+1.6=2.6{\rm{ = 0}}{\rm{.2 + 0}}{\rm{.8 + 1}}{\rm{.6 = 2}}{\rm{.6}}

D. K4[Fe(CN)6]{{\rm{K}}_{\rm{4}}}\left[ {{\rm{Fe}}{{\left( {{\rm{CN}}} \right)}_{\rm{6}}}} \right] with 50%50\% dissociation
K4[Fe(CN)6]4K++Fe(CN)64 10.5                                4×0.5          0.5 {{\rm{K}}_{\rm{4}}}{\rm{[Fe(CN}}{{\rm{)}}_{\rm{6}}}{\rm{]}} \to {\rm{4}}{{\rm{K}}^{\rm{ + }}}{\rm{ + Fe(CN)}}_{\rm{6}}^{{\rm{4 - }}} \\\ {\rm{1 - 0}}{\rm{.5\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;4 \times 0}}{\rm{.5\;\;\;\;\;0}}{\rm{.5}}
Van't Hoff factor =0.5+2+0.5=3{\rm{ = 0}}{\rm{.5 + 2 + 0}}{\rm{.5 = 3}}

**Option D is correct

Note:**
The extent to which a substance associates or dissociates in a solution is described by the Van’t Hoff factor.Dissociation refers to the splitting of a molecule into multiple ionic entities.
For example, sodium chloride NaCl{\rm{NaCl}} dissociates into Na+  and   Cl{\rm{N}}{{\rm{a}}^{\rm{ + }}}{\rm{\;and\;\ C}}{{\rm{l}}^{\rm{ - }}} ions when dissolved in water.