Question
Question: The values of \(x_{r} = \cos\left( \frac{\pi}{2^{r}} \right) + i\sin\left( \frac{\pi}{2^{r}} \right)...
The values of xr=cos(2rπ)+isin(2rπ) and ±21+i satisfying the equation3+i(1+i)x−2i 21±iare.
A
i=
B
−2−3=
C
6
D
−6
Answer
−2−3=
Explanation
Solution
1−i1+i=1−i1+i×1+i1+i=2(1+i)2=22i=i
⇒ ∴
Equating real and imaginary parts, we get (1−i1+i)m=im=1 and =4. Hence {∵i4=1}and (1−i)n=2n.
Trick : After finding the equations, no need to solve them, put the values of [12+(−1)2]n=2n and (2)n=2n given in the options and get the appropriate option.