Solveeit Logo

Question

Question: The values of \(x_{r} = \cos\left( \frac{\pi}{2^{r}} \right) + i\sin\left( \frac{\pi}{2^{r}} \right)...

The values of xr=cos(π2r)+isin(π2r)x_{r} = \cos\left( \frac{\pi}{2^{r}} \right) + i\sin\left( \frac{\pi}{2^{r}} \right) and ±1+i2\pm \frac{1 + i}{\sqrt{2}} satisfying the equation(1+i)x2i3+i\frac { ( 1 + i ) x - 2 i } { 3 + i } 1±i2\frac{1 \pm i}{\sqrt{2}}are.

A

i=\sqrt{i} =

B

23=\sqrt{- 2}\sqrt{- 3} =

C

6\sqrt{6}

D

6- \sqrt{6}

Answer

23=\sqrt{- 2}\sqrt{- 3} =

Explanation

Solution

1+i1i=1+i1i×1+i1+i=(1+i)22=2i2=i\frac{1 + i}{1 - i} = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i} = \frac{(1 + i)^{2}}{2} = \frac{2i}{2} = i

\therefore

Equating real and imaginary parts, we get (1+i1i)m=im=1\left( \frac{1 + i}{1 - i} \right)^{m} = i^{m} = 1 and =4= 4. Hence {i4=1}\{\because i^{4} = 1\}and (1i)n=2n(1 - i)^{n} = 2^{n}.

Trick : After finding the equations, no need to solve them, put the values of [12+(1)2]n=2n\left\lbrack \sqrt{1^{2} + ( - 1)^{2}} \right\rbrack^{n} = 2^{n} and (2)n=2n(\sqrt{2})^{n} = 2^{n} given in the options and get the appropriate option.