Question
Question: The values of \(\theta \) lying between \(0\) and \(\dfrac{\pi }{2}\) and satisfying the equation ...
The values of θ lying between 0 and 2π and satisfying the equation
\left| {\begin{array}{*{20}{c}}
{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
Are
A.247π
B.245π
C.2411π
D.24π
Solution
The equation is given in determinant form. We will solve the determinant first, using column and row operations to convert the elements of determinant in simpler form. We know that sin2θ+cos2θ=1 so we can perform operationC1→C1 + C2. And similarly we can perform row operations to make the determinant easier to solve. Then expand the determinant and solve forθ.
Complete step-by-step answer:
Here the equation is given in the form-
⇒ \left| {\begin{array}{*{20}{c}}
{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
Here the value of θ lies between 0 and2π. We have to find the value of θ.
Now first we will perform the operation C1→C1 + C2
Then we get-
\Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + {{\sin }^2}\theta + {{\cos }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta + 1 + {{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\
{{{\sin }^2}\theta + {{\cos }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
Now we know that sin2θ+cos2θ=1
So on applying this, we get-
\Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + 1}&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
{1 + 1}&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\
1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
On simplifying, we get-
\Rightarrow \left| {\begin{array}{*{20}{c}}
2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
2&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\
1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
Now we can see that the terms on second row match with terms of first row so on performing operation, R2→R2−R1 , we get-
\Rightarrow \left| {\begin{array}{*{20}{c}}
2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\
{2 - 2}&{1 + {{\cos }^2}\theta - {{\cos }^2}\theta }&{4\sin 4\theta - 4\sin 4\theta } \\\
1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }
\end{array}} \right| = 0
On simplifying, we get-