Solveeit Logo

Question

Question: The values of \(\theta \) lying between \(0\) and \(\dfrac{\pi }{2}\) and satisfying the equation ...

The values of θ\theta lying between 00 and π2\dfrac{\pi }{2} and satisfying the equation
\left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
Are
A.7π24\dfrac{{7\pi }}{{24}}
B.5π24\dfrac{{5\pi }}{{24}}
C.11π24\dfrac{{11\pi }}{{24}}
D.π24\dfrac{\pi }{{24}}

Explanation

Solution

The equation is given in determinant form. We will solve the determinant first, using column and row operations to convert the elements of determinant in simpler form. We know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 so we can perform operationC1C1 + C2{{\text{C}}_1} \to {{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_2}. And similarly we can perform row operations to make the determinant easier to solve. Then expand the determinant and solve forθ\theta .

Complete step-by-step answer:
Here the equation is given in the form-
\Rightarrow \left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
Here the value of θ\theta lies between 00 andπ2\dfrac{\pi }{2}. We have to find the value of θ\theta .
Now first we will perform the operation C1C1 + C2{{\text{C}}_1} \to {{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_2}
Then we get-
\Rightarrow \left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}\theta + {{\cos }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta + 1 + {{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\ {{{\sin }^2}\theta + {{\cos }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
Now we know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
So on applying this, we get-
\Rightarrow \left| {\begin{array}{*{20}{c}} {1 + 1}&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ {1 + 1}&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\ 1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
On simplifying, we get-
\Rightarrow \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 2&{1 + {{\cos }^2}\theta }&{4\sin 4\theta } \\\ 1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
Now we can see that the terms on second row match with terms of first row so on performing operation, R2R2R1{R_2} \to {R_2} - {R_1} , we get-
\Rightarrow \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ {2 - 2}&{1 + {{\cos }^2}\theta - {{\cos }^2}\theta }&{4\sin 4\theta - 4\sin 4\theta } \\\ 1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0
On simplifying, we get-

2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 0&1&0 \\\ 1&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta } \end{array}} \right| = 0$$ Now performing operation, ${R_3} \to {R_3} - {R_1}$ , we get- $$ \Rightarrow \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 2&1&0 \\\ {1 - 2}&{{{\cos }^2}\theta - {{\cos }^2}\theta }&{1 + 4\sin 4\theta - 4\sin 4\theta } \end{array}} \right| = 0$$ On simplifying, we get- $$ \Rightarrow \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 0&1&0 \\\ { - 1}&0&1 \end{array}} \right| = 0$$ Now on expanding the determinant, we get- $$ \Rightarrow 2\left| {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right| - {\cos ^2}\theta \left| {\begin{array}{*{20}{c}} 0&0 \\\ { - 1}&1 \end{array}} \right| + 4\sin 4\theta \left| {\begin{array}{*{20}{c}} 0&1 \\\ { - 1}&0 \end{array}} \right| = 0$$ On solving the above, we get- $$ \Rightarrow 2\left( {1 - 0} \right) - {\cos ^2}\theta \left( {0 - 0} \right) + 4\sin 4\theta \left( {0 - \left( { - 1} \right)} \right) = 0$$ On simplifying, we get- $$ \Rightarrow 2 + 4\sin 4\theta = 0$$ On taking $2$ common we get- $$ \Rightarrow 2\left( {1 + 2\sin 4\theta } \right) = 0$$ On simplifying, we get- $$ \Rightarrow 1 + 2\sin 4\theta = 0$$ On rearranging, we get- $$ \Rightarrow 2\sin 4\theta = - 1$$ On simplifying, we get- $$ \Rightarrow \sin 4\theta = \dfrac{{ - 1}}{2}$$ Here the value of $\sin \theta $ is negative which is only possible in $3rd$ and $4th$ quadrant. And we know that $\sin \dfrac{\pi }{6} = \dfrac{1}{2}$ .Then we can write- For third quadrant- $ \Rightarrow \sin 4\theta = \sin \left( {\pi + \dfrac{\pi }{6}} \right)$ On simplifying, we get- $ \Rightarrow 4\theta = \pi + \dfrac{\pi }{6},$ On taking LCM on the right side, we get- $ \Rightarrow 4\theta = \dfrac{{7\pi }}{6} $ On transferring $4$ on right side, we get- $ \Rightarrow \theta = \dfrac{{7\pi }}{{4 \times 6}} = \dfrac{{7\pi }}{{24}}$ For fourth quadrant- $ \Rightarrow \sin 4\theta = \sin \left( {2\pi - \dfrac{\pi }{6}} \right)$ On solving, we get- $ \Rightarrow 4\theta = 2\pi - \dfrac{\pi }{6}$ On taking LCM on the right side, we get- $ \Rightarrow 4\theta = \dfrac{{11\pi }}{6}$ On transferring $4$ on right side, we get- $ \Rightarrow \theta = \dfrac{{11\pi }}{{4 \times 6}} = \dfrac{{11\pi }}{{24}}$ **Hence the correct answers are option A and option C.** **Note:** Here we can also expand the determinant this way- $$ \Rightarrow 2\left| {\begin{array}{*{20}{c}} 1&0 \\\ 0&1 \end{array}} \right| - 0\left| {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 0&1 \end{array}} \right| - 1\left| {\begin{array}{*{20}{c}} {{{\cos }^2}\theta }&{4\sin 4\theta } \\\ 1&0 \end{array}} \right| = 0$$ On solving this, we get- $$ \Rightarrow 2\left( {1 - 0} \right) - 0 - 1\left( {0 - 4\sin 4\theta } \right) = 0$$ On simplifying, we get- $$ \Rightarrow 2 + 4\sin 4\theta = 0$$ So this is also right as solving the solution in the same pattern will give us the same answer.