Solveeit Logo

Question

Question: The values of the determinant \(\left| \begin{matrix} 1 & \cos(\alpha - \beta) & \cos\alpha \\ \cos...

The values of the determinant

1cos(αβ)cosαcos(αβ)1cosβcosαcosβ1\left| \begin{matrix} 1 & \cos(\alpha - \beta) & \cos\alpha \\ \cos(\alpha - \beta) & 1 & \cos\beta \\ \cos\alpha & \cos\beta & 1 \end{matrix} \right|is.

A

α2+β2\alpha^{2} + \beta^{2}

B

α2β2\alpha^{2} - \beta^{2}

C

1

D

0

Answer

0

Explanation

Solution

On solving the determinant,

1(1cos2β)cos(αβ)[cos(αβ)cosαcosβ]1(1 - \cos^{2}\beta) - \cos(\alpha - \beta)\lbrack\cos(\alpha - \beta) - \cos\alpha\cos\beta\rbrack

+cosα[cosβcos(αβ)cosα]+ \cos\alpha\lbrack\cos\beta\cos(\alpha - \beta) - \cos\alpha\rbrack

=1cos2βcos2αcos2(αβ)+2cosαcosβcos(αβ)= 1 - \cos^{2}\beta - \cos^{2}\alpha - \cos^{2}(\alpha - \beta) + 2\cos\alpha\cos\beta\cos(\alpha - \beta)

= 1cos2βcos2α+cos(αβ)1 - \cos^{2}\beta - \cos^{2}\alpha + \cos(\alpha - \beta) (2cosαcosβcos(αβ))(2\cos\alpha\cos\beta - \cos(\alpha - \beta))

= 1cos2βcos2α+cos(αβ)1 - \cos^{2}\beta - \cos^{2}\alpha + \cos(\alpha - \beta)

[cos(α+β)+cos(αβ)cos(αβ)]\lbrack\cos(\alpha + \beta) + \cos(\alpha - \beta) - \cos(\alpha - \beta)\rbrack

= 1cos2βcos2α+cos(αβ)cos(α+β)1 - \cos^{2}\beta - \cos^{2}\alpha + \cos(\alpha - \beta)\cos(\alpha + \beta)

= 1cos2βcos2α+cos2αcos2βsin2αsin2β1 - \cos^{2}\beta - \cos^{2}\alpha + \cos^{2}\alpha\cos^{2}\beta - \sin^{2}\alpha\sin^{2}\beta

= 1cos2βcos2α(1cos2β)sin2αsin2β1 - \cos^{2}\beta - \cos^{2}\alpha(1 - \cos^{2}\beta) - \sin^{2}\alpha\sin^{2}\beta

= 1cos2βcos2αsin2βsin2αsin2β1 - \cos^{2}\beta - \cos^{2}\alpha\sin^{2}\beta - \sin^{2}\alpha\sin^{2}\beta

= 1cos2βsin2β1 - \cos^{2}\beta - \sin^{2}\beta = 0.