Question
Question: The values of the determinant \(\left| \begin{matrix} 1 & \cos(\alpha - \beta) & \cos\alpha \\ \cos...
The values of the determinant
1cos(α−β)cosαcos(α−β)1cosβcosαcosβ1is.
A
α2+β2
B
α2−β2
C
1
D
0
Answer
0
Explanation
Solution
On solving the determinant,
1(1−cos2β)−cos(α−β)[cos(α−β)−cosαcosβ]
+cosα[cosβcos(α−β)−cosα]
=1−cos2β−cos2α−cos2(α−β)+2cosαcosβcos(α−β)
= 1−cos2β−cos2α+cos(α−β) (2cosαcosβ−cos(α−β))
= 1−cos2β−cos2α+cos(α−β)
[cos(α+β)+cos(α−β)−cos(α−β)]
= 1−cos2β−cos2α+cos(α−β)cos(α+β)
= 1−cos2β−cos2α+cos2αcos2β−sin2αsin2β
= 1−cos2β−cos2α(1−cos2β)−sin2αsin2β
= 1−cos2β−cos2αsin2β−sin2αsin2β
= 1−cos2β−sin2β = 0.