Solveeit Logo

Question

Question: The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfyin...

The value(s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions

x > 0, y > 0

A

MĪ (0, )

B

M Ī(,152)\left( –\infty,–\frac{15}{2} \right)Č (30, )

C

(152,)\left( –\frac{15}{2},\infty \right)

D

None of these

Answer

M Ī(,152)\left( –\infty,–\frac{15}{2} \right)Č (30, )

Explanation

Solution

By using Cramer’s rule, the solution of the system is

x = ΔxΔ\frac{\Delta_{x}}{\Delta}, y = ΔyΔ\frac{\Delta_{y}}{\Delta}, where D = 3m25\left| \begin{matrix} 3 & m \\ 2 & - 5 \end{matrix} \right| = –(15 + 2m)

Dx = mm205\left| \begin{matrix} m & m \\ 20 & - 5 \end{matrix} \right| = –25m, Dy = 3m220\left| \begin{matrix} 3 & m \\ 2 & 20 \end{matrix} \right| = 60 – 2m

Ž x = 25m(15+2m)\frac{- 25m}{–(15 + 2m)}=25m(15+2m)(15+2m)2\frac{25m(15 + 2m)}{(15 + 2m)^{2}}> 0,

for m > 0, or m < 152–\frac{15}{2}.

Also y = 602m(15+2m)\frac{60 - 2m}{- (15 + 2m)}=2(m30)(15+2m)(15+2m)2\frac{2(m - 30)(15 + 2m)}{(15 + 2m)^{2}}>0

for m > 30, or m < 152–\frac{15}{2}.

Ž x > 0, y > 0 for m > 30 or m < 152–\frac{15}{2}

For m = 152–\frac{15}{2}, the system has no solution.

Hence (2) is correct answer.