Solveeit Logo

Question

Question: The value(s) of $\int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2}dx$ is (are)...

The value(s) of 01x4(1x)41+x2dx\int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2}dx is (are)

A

227π\frac{22}{7} - \pi

B

2105\frac{2}{105}

C

0

D

71153π2\frac{71}{15} - \frac{3\pi}{2}

Answer

227π\frac{22}{7} - \pi

Explanation

Solution

To evaluate the integral I=01x4(1x)41+x2dxI = \int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2}dx, we first expand the numerator:

x4(1x)4=(x(1x))4=(xx2)4=x84x7+6x64x5+x4x^4(1-x)^4 = (x(1-x))^4 = (x-x^2)^4 = x^8 - 4x^7 + 6x^6 - 4x^5 + x^4.

Now, we perform polynomial long division of x84x7+6x64x5+x4x^8 - 4x^7 + 6x^6 - 4x^5 + x^4 by x2+1x^2+1, which yields:

x84x7+6x64x5+x4x2+1=x64x5+5x44x2+44x2+1\frac{x^8 - 4x^7 + 6x^6 - 4x^5 + x^4}{x^2+1} = x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - \frac{4}{x^2+1}.

So the integral becomes:

I=01(x64x5+5x44x2+441+x2)dxI = \int_{0}^{1} \left( x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - \frac{4}{1+x^2} \right) dx.

Integrating term by term:

01x6dx=17\int_{0}^{1} x^6 dx = \frac{1}{7}

014x5dx=23\int_{0}^{1} -4x^5 dx = -\frac{2}{3}

015x4dx=1\int_{0}^{1} 5x^4 dx = 1

014x2dx=43\int_{0}^{1} -4x^2 dx = -\frac{4}{3}

014dx=4\int_{0}^{1} 4 dx = 4

0141+x2dx=4arctan(1)=π\int_{0}^{1} -\frac{4}{1+x^2} dx = -4 \arctan(1) = -\pi

Summing these values:

I=1723+143+4π=1763+5π=172+5π=17+3π=227πI = \frac{1}{7} - \frac{2}{3} + 1 - \frac{4}{3} + 4 - \pi = \frac{1}{7} - \frac{6}{3} + 5 - \pi = \frac{1}{7} - 2 + 5 - \pi = \frac{1}{7} + 3 - \pi = \frac{22}{7} - \pi.

Therefore, the value of the integral is 227π\frac{22}{7} - \pi.