Question
Question: The value(s) of $\int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2}dx$ is (are)...
The value(s) of ∫011+x2x4(1−x)4dx is (are)

A
722−π
B
1052
C
0
D
1571−23π
Answer
722−π
Explanation
Solution
To evaluate the integral I=∫011+x2x4(1−x)4dx, we first expand the numerator:
x4(1−x)4=(x(1−x))4=(x−x2)4=x8−4x7+6x6−4x5+x4.
Now, we perform polynomial long division of x8−4x7+6x6−4x5+x4 by x2+1, which yields:
x2+1x8−4x7+6x6−4x5+x4=x6−4x5+5x4−4x2+4−x2+14.
So the integral becomes:
I=∫01(x6−4x5+5x4−4x2+4−1+x24)dx.
Integrating term by term:
∫01x6dx=71
∫01−4x5dx=−32
∫015x4dx=1
∫01−4x2dx=−34
∫014dx=4
∫01−1+x24dx=−4arctan(1)=−π
Summing these values:
I=71−32+1−34+4−π=71−36+5−π=71−2+5−π=71+3−π=722−π.
Therefore, the value of the integral is 722−π.