Solveeit Logo

Question

Question: The values of constants ‘a’ and ‘b’ so that \(\lim_{x \rightarrow \infty}\left( \frac{x^{2} - 1}{x ...

The values of constants ‘a’ and ‘b’ so that

limx(x21x+1axb)=2\lim_{x \rightarrow \infty}\left( \frac{x^{2} - 1}{x + 1} - ax - b \right) = 2 is

A

a=0,b=0a = 0,b = 0

B

a=1,b=1a = 1,b = - 1

C

a=1,b=3a = 1,b = - 3

D

a=2,b=1a = 2,b = - 1

Answer

a=1,b=3a = 1,b = - 3

Explanation

Solution

limx(x21x+1axb)=2\lim_{x \rightarrow \infty}\left( \frac{x^{2} - 1}{x + 1} - ax - b \right) = 2

limxx1axb=2limxx(1a)(1+b)=2\Rightarrow \lim_{x \rightarrow \infty}x - 1 - ax - b = 2 \Rightarrow \lim_{x \rightarrow \infty}x(1 - a) - (1 + b) = 2.

Comparing the coefficient of both sides, 1a=01 - a = 0

and 1+b=2a=1,b=31 + b = - 2 \Rightarrow a = 1,b = - 3