Solveeit Logo

Question

Question: The values of \(\because\) satisfying \(- \pi \leq x \leq \pi\) and \(\therefore\) are....

The values of \because satisfying πxπ- \pi \leq x \leq \pi and \therefore are.

A

x=±π4,±π2,±3π4x = \pm \frac{\pi}{4}, \pm \frac{\pi}{2}, \pm \frac{3\pi}{4}

B

sin7θ+sinθsin4θ=0\sin 7\theta + \sin\theta - \sin 4\theta = 0

C

\Rightarrow

D

2sin4θcos3θsin4θ=02\sin 4\theta\cos 3\theta - \sin 4\theta = 0

Answer

x=±π4,±π2,±3π4x = \pm \frac{\pi}{4}, \pm \frac{\pi}{2}, \pm \frac{3\pi}{4}

Explanation

Solution

\Rightarrow

\Rightarrow cosθ=12θ=3π4,5π4\cos\theta = - \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{3\pi}{4},\frac{5\pi}{4}

tanθ=1θ=π4,5π4\tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4},\frac{5\pi}{4} \therefore

Now sin2nπ+5π42n\pi + \frac{5\pi}{4} (2n+1)π+π4(2n + 1)\pi + \frac{\pi}{4} sin(A+B)=1\sin(A + B) = 1 cos(AB)=32\cos(A - B) = \frac{\sqrt{3}}{2} \Rightarrow.

And A+B=π2A + B = \frac{\pi}{2} AB=π6A - B = \frac{\pi}{6} \Rightarrow A=π3,B=π6A = \frac{\pi}{3},B = \frac{\pi}{6} 22cos2θ+3cosθ+1=02 - 2\cos^{2}\theta + \sqrt{3}\cos\theta + 1 = 0.