Solveeit Logo

Question

Question: The values of \[\alpha \] if \[(\alpha ,2\alpha )\]lies inside the \[\Delta ABC\] if \[A(0,2),B(2,...

The values of α\alpha if (α,2α)(\alpha ,2\alpha )lies inside the ΔABC\Delta ABC if
A(0,2),B(2,0)A(0,2),B(2,0)and C(4,4)C(4,4)
(a) α(13,23)\alpha \in \left( \dfrac{1}{3},\dfrac{2}{3} \right)
(b) α(23,1)\alpha \in \left( \dfrac{2}{3},1 \right)
(c) α(23,43)\alpha \in \left( \dfrac{2}{3},\dfrac{4}{3} \right)
(d) α(13,1)\alpha \in \left( \dfrac{1}{3},1 \right)

Explanation

Solution

Hint: Find the equation of the lines which are forming the triangle.

The figure for the given problem is as follows:

Now we will find the equations of all the three sides of the triangle.
We know equation of line between the two points (x1,y1)({{x}_{1}},{{y}_{1}}) and (x2,y2)({{x}_{2}},{{y}_{2}})can be written as,
yy1y2y1=xx1x2x1\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}
Applying the above formula, the equation of side AB is,
y202=x020\dfrac{y-2}{0-2}=\dfrac{x-0}{2-0}
y22=x2\dfrac{y-2}{-2}=\dfrac{x}{2}
y21=x1\dfrac{y-2}{-1}=\dfrac{x}{1}
On cross multiplication, we get
y2=xy-2=-x
x+y2=0........(i)x+y-2=0........(i)
Similarly, the equation of side BC is,
y040=x242\dfrac{y-0}{4-0}=\dfrac{x-2}{4-2}
y4=x22\dfrac{y}{4}=\dfrac{x-2}{2}
y2=x21\dfrac{y}{2}=\dfrac{x-2}{1}
On cross multiplication, we get
y=2x4y=2x-4
2xy4=0........(ii)2x-y-4=0........(ii)
And, the equation of side AC is,
y242=x040\dfrac{y-2}{4-2}=\dfrac{x-0}{4-0}
y22=x4\dfrac{y-2}{2}=\dfrac{x}{4}
y21=x2\dfrac{y-2}{1}=\dfrac{x}{2}
On cross multiplication, we get
2y4=x2y-4=x
x2y+4=0........(iii)x-2y+4=0........(iii)
Therefore the figure with equations is,

Two given points (x1, y1)\left( {{x}_{1}},\text{ }{{y}_{1}} \right)and (x2, y2)\left( {{x}_{2}},\text{ }{{y}_{2}} \right)will lie on the same side of the line ax+by+c=0ax+by+c=0 if ax1+by1+ca{{x}_{1}}+b{{y}_{1}}+c and ax2+by2+ca{{x}_{2}}+b{{y}_{2}}+c will have same signs.
From the above figure it is clear that the points B and D lie on the same side of the line AC. So, it should satisfy the above condition, i.e.,
22(0)+4=6>02-2(0)+4=6>0
So, when we substitute the value of point D in line AC, it should be greater than zero, i.e.,
α2(2α)+4>0\alpha -2(2\alpha )+4>0
α4α+4>0\alpha -4\alpha +4>0
3α+4>0-3\alpha +4>0
4>3α4>3\alpha
α<43.........(iv)\Rightarrow \alpha <\dfrac{4}{3}.........(iv)
Now from the above figure it is clear that the points C and D lie on the same side of the line AB. Substitute value of point C in equation of line AB, we get
4+42=6>04+4-2=6>0
So, when we substitute the value of point D in line AB, it should be greater than zero, i.e.,
α+2α2>0\alpha +2\alpha -2>0
3α2>03\alpha -2>0
3α>23\alpha >2
α>23.........(v)\Rightarrow \alpha >\dfrac{2}{3}.........(v)
So, from equation (iv) and (v), we get
α(23,43)\alpha \in \left( \dfrac{2}{3},\dfrac{4}{3} \right)
Hence the correct answer is option (c).
Note: We can solve this by finding boundaries of x and y. But the options are given in fraction form, using this method it gives the exact answer.