Solveeit Logo

Question

Mathematics Question on matrix transformation

The values of α\alpha for which the system of equation x + y + z = 1, x + 2y + 4z = α\alpha, x + 4y + 10z = α2\alpha^2 is consistent are given by

A

1, -2

B

-1, 2

C

44563

D

44562

Answer

44563

Explanation

Solution

We have
A:B 111:1 124:α 1410:α2 \begin{vmatrix} 1 & 1 & 1 & : & 1 \\\ 1 & 2 &4&:& \alpha \\\ 1&4&10&:&\alpha^2 \\\ \end{vmatrix}
                    \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sim 111:1 013:α1 039:α21 \begin{vmatrix} 1 & 1 & 1 & : & 1 \\\ 0 & 1 &3&:& \alpha-1 \\\ 0&3&9&:&\alpha^2-1 \\\ \end{vmatrix}
[applying R2  R2  R1 & R3  R3  R1 ]\begin{bmatrix} applying \ R_2 \ \rightarrow \ R_2 \ - \ R_1 \\\ \& \ R_3 \ \rightarrow \ R_3 \ - \ R_1 \\\ \end{bmatrix}
   \ \ \ \sim 111:1 013:α1 000:α23α+2 \begin{vmatrix} 1 & 1 & 1 & : & 1 \\\ 0 & 1 &3&:& \alpha-1 \\\ 0&0&0&:&\alpha^2-3\alpha+2 \\\ \end{vmatrix}
                 [applying  R3  R3  3R2]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [applying \ \ R_3 \ \rightarrow \ R_3 \ - \ 3R_2]
But the system is consistent
  α2 3α+ 2 =0\therefore \ \ \alpha^2 - \ 3 \alpha + \ 2 \ =0
  (α  2)(α  1)=0  α =2 or α = 1\Rightarrow \ \ (\alpha \ - \ 2)(\alpha \ - \ 1)=0 \ \Rightarrow \ \alpha \ =2 \ or \ \alpha \ = \ 1