Solveeit Logo

Question

Question: The values of ‘a’ for which exactly one root of the equation e<sup>a</sup>*x*<sup>2</sup> – e<sup>2a...

The values of ‘a’ for which exactly one root of the equation eax2 – e2ax + ea – 1 = 0 lies between 1 and 2 are given by –

A

ln(517)4\frac{(5 - \sqrt{17})}{4}< a <ln5+174\frac{5 + \sqrt{17}}{4}

B

0 < a < 100

C

ln54\frac{5}{4}< a <ln103\frac{10}{3}

D

None of these

Answer

ln(517)4\frac{(5 - \sqrt{17})}{4}< a <ln5+174\frac{5 + \sqrt{17}}{4}

Explanation

Solution

(ea – e2a + ea – 1) (4ea – 2e2a + ea – 1) < 0

(e2a – 2ea + 1) (2e2a – 5ea + 1) < 0

Let, x = ea

⇒ (x – 1)2 (2x2 – 5x + 1) < 0

⇒ (x – 1)2 (x5174)\left( x - \frac { 5 - \sqrt { 17 } } { 4 } \right) (x5+174)\left( x - \frac{5 + \sqrt{17}}{4} \right) < 0

5174\frac{5 - \sqrt{17}}{4} < x < 5+174\frac{5 + \sqrt{17}}{4}

⇒ ln (5174)\left( \frac{5 - \sqrt{17}}{4} \right) < a < ln (5+174)\left( \frac{5 + \sqrt{17}}{4} \right).