Solveeit Logo

Question

Question: The values of \(a,b\) and \(c\) such that \(\mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - b\log...

The values of a,ba,b and cc such that limx0axexblog(1+x)+cxexx2sinx=2\mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - b\log \left( {1 + x} \right) + cx{e^{ - x}}}}{{{x^2}\sin x}} = 2
A. a=3,b=12,c=9a = 3,b = 12,c = 9
B. a=2,b=4,c=2a = 2,b = 4,c = 2
C. a=2,b=10,c=8a = 2,b = 10,c = 8
D, a=3,b=12,c=9a = 3,b = - 12,c = - 9

Explanation

Solution

This problem deals with solving the limit with L’Hospital’s rule. The L’Hospital’s rule is applied to a limit when the limit is in indeterminate form. This is done by differentiating the numerator and the denominator and then limit is applied again, which is given by:
limxaf(x)g(x)=f(a)g(a)\Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{f'(a)}}{{g'(a)}}
Here basic derivatives are also used such as:
ddx(logx)=1x\Rightarrow \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}
ddx(ex)=ex\Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}

Complete step-by-step answer:
Using the L’Hospital’s rule to the given limit.
Consider the given limit, as given below:
limx0axexblog(1+x)+cxexx2sinx=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - b\log \left( {1 + x} \right) + cx{e^{ - x}}}}{{{x^2}\sin x}} = 2
We know that the limit of sinx\sin x, when xx tends to zero is equal to xx, which is given below:
limx0sinx=x\Rightarrow \mathop {\lim }\limits_{x \to 0} \sin x = x
Also the limit of log(1+x)\log \left( {1 + x} \right), when xx tends to zero is equal to xx, which is given below:
limx0log(1+x)=x\Rightarrow \mathop {\lim }\limits_{x \to 0} \log \left( {1 + x} \right) = x
Now applying these limits on the above given limit, as given below:
limx0axexblog(1+x)+cxexx2sinx=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - b\log \left( {1 + x} \right) + cx{e^{ - x}}}}{{{x^2}\sin x}} = 2
Substituting the considered and obtained limits, limx0log(1+x)=x\mathop {\lim }\limits_{x \to 0} \log \left( {1 + x} \right) = x and limx0sinx=x\mathop {\lim }\limits_{x \to 0} \sin x = x, as shown below:
limx0axexb(x)+cxexx2(x)=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - b\left( x \right) + cx{e^{ - x}}}}{{{x^2}\left( x \right)}} = 2
limx0axexbx+cxexx3=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{ax{e^x} - bx + cx{e^{ - x}}}}{{{x^3}}} = 2
Here taking the term xx, in the numerator and denominator from the above limit, as given below:
limx0x(aexb+cex)x3=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {a{e^x} - b + c{e^{ - x}}} \right)}}{{{x^3}}} = 2
limx0aexb+cexx2=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} - b + c{e^{ - x}}}}{{{x^2}}} = 2
Now if xx tends to zero, in the denominator the limit does not exist, hence the numerator should be equal to zero, which is given by:
limx0aexb+cex=0\Rightarrow \mathop {\lim }\limits_{x \to 0} a{e^x} - b + c{e^{ - x}} = 0
We know that e0=1{e^0} = 1, hence the above limit is expressed as given below:
a(1)b+c(1)=0\Rightarrow a\left( 1 \right) - b + c\left( 1 \right) = 0
ab+c=0\Rightarrow a - b + c = 0
Now consider the limit limx0aexb+cexx2=2\mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} - b + c{e^{ - x}}}}{{{x^2}}} = 2, as this limit does not exist, hence applying the L’Hospital’s rule to the limit as shown below:
limx0aex0cex2x=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} - 0 - c{e^{ - x}}}}{{2x}} = 2
limx0aexcex2x=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} - c{e^{ - x}}}}{{2x}} = 2
Here even this limit does not exist as xx is present in the denominator, so the numerator should be equal to zero, which is given by:
limx0aexcex=0\Rightarrow \mathop {\lim }\limits_{x \to 0} a{e^x} - c{e^{ - x}} = 0
ac=0\Rightarrow a - c = 0
Applying the L’Hospital’s rule to limit limx0aexcex2x=2\mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} - c{e^{ - x}}}}{{2x}} = 2, as given below:
limx0aex+cex2=2\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{a{e^x} + c{e^{ - x}}}}{2} = 2
a+c2=2\Rightarrow \dfrac{{a + c}}{2} = 2
a+c=4\Rightarrow a + c = 4
Now we have two equations and two variables, hence adding these two equations to get the values of aa and cc, as given below:
a+c=4\Rightarrow a + c = 4
ac=0\Rightarrow a - c = 0
2a=4\Rightarrow 2a = 4
a=2\therefore a = 2
Substituting the value of a=2a = 2, in the above equation, to get the value of cc, as given below:
a+c=4\Rightarrow a + c = 4
2+c=4\Rightarrow 2 + c = 4
c=2\therefore c = 2
From the first equation ab+c=0a - b + c = 0, finding the value of bb, as given below:
b=a+c\Rightarrow b = a + c
b=2+2\Rightarrow b = 2 + 2
b=4\therefore b = 4

Final Answer: The values of a, b and c are 2, 4 and 2 respectively.

Note:
Please note that in mathematics, more specifically in calculus, L’Hospital’s rule provides a technique to evaluate limits of indeterminate forms. Application of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution.
Also note that if ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x} , then ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^{ - x}}} \right) = - {e^{ - x}}