Solveeit Logo

Question

Question: The values of A and B such that the function \(a = 1,b = - 3\), is continuous everywhere are...

The values of A and B such that the function

a=1,b=3a = 1,b = - 3, is continuous everywhere are

A

a=2,b=1a = 2,b = - 1

B

limn[n2n3]=\lim_{n \rightarrow \infty}\left\lbrack \frac{\sum n^{2}}{n^{3}} \right\rbrack =

C

16- \frac{1}{6}

D

16\frac{1}{6}

Answer

16- \frac{1}{6}

Explanation

Solution

For continuity at all we must have

f(π2)=limx(π/2)(2sinx)f \left( - \frac { \pi } { 2 } \right) = \lim _ { x \rightarrow ( - \pi / 2 ) ^ { - } } ( - 2 \sin x ) =limx(π/2)+(Asinx+B)= \lim _ { x \rightarrow ( - \pi / 2 ) ^ { + } } ( A \sin x + B )

2=A+B2 = - A + B …..(i)

and f(π2)=limx(π/2)(Asinx+B)f \left( \frac { \pi } { 2 } \right) = \lim _ { x \rightarrow ( \pi / 2 ) ^ { - } } ( A \sin x + B ) =limx(π/2)+(cosx)= \lim _ { x \rightarrow ( \pi / 2 ) ^ { + } } ( \cos x )

0=A+B0 = A + B ….(ii)

From (i) and (ii), A=1A = - 1 and B=1B = 1.