Solveeit Logo

Question

Question: The values of 'a' and 'b' for which equation \(( - \infty, - 2) \cup (2,\infty)\) have four real roo...

The values of 'a' and 'b' for which equation (,2)(2,)( - \infty, - 2) \cup (2,\infty) have four real roots.

A

– 6, – 4

B

– 6, 5

C

– 6, 4

D

6, – 4

Answer

6, – 4

Explanation

Solution

Let for real roots are ax2+x(4ab)+4a+2b+c=0ax^{2} + x(4a - b) + 4a + 2b + c = 0 then equation is

(xα)(xβ)(xγ)(xδ)=0( x - \alpha ) ( x - \beta ) ( x - \gamma ) ( x - \delta ) = 0 x2+bx+c=0x^{2} + bx + c = 0 +αδ+βδ+αγ)x2(αβγ+βγδ+ \alpha \delta + \beta \delta + \alpha \gamma ) x ^ { 2 } - ( \alpha \beta \gamma + \beta \gamma \delta r2c=b2qr^{2}c = b^{2}q

r2b=c2qr^{2}b = c^{2}q

on comparing with rb2=cq2rb^{2} = cq^{2}

x2xk=0x^{2} - x - k = 0

2±32 \pm \sqrt{3}

For real roots, A.M. of roots 3±23 \pm \sqrt{2}G.M. of roots

5±25 \pm \sqrt{2}; 3+4i3 + 4i

x2+px+q=0p=6,q=25x^{2} + px + q = 0p = 6,q = 25

p=6,q=1p = 6,q = 1p=6,q=7p = - 6,q = - 7

p=6,q=25p = - 6,q = 25 and ax2+bx+c=0ax^{2} + bx + c = 0

b2ac+bca2=α\frac{b^{2}}{ac} + \frac{bc}{a^{2}} = \alpha = 1

Now, β\beta

x26x+a=0x^{2} - 6x + a = 0

3α+2β=16,3\alpha + 2\beta = 16, = 6

α,β\alpha,\beta

lx2+mx+n=0lx^{2} + mx + n = 0

α3β\alpha^{3}\beta

αβ3\alpha\beta^{3};l4x2nl(m22nl)x+n4=0l^{4}x^{2} - nl(m^{2} - 2nl)x + n^{4} = 0and l4x2+nl(m22nl)x+n4=0l^{4}x^{2} + nl(m^{2} - 2nl)x + n^{4} = 0.