Solveeit Logo

Question

Question: The value \( \tan \dfrac{A}{2} \) is equal to: A. \( \csc A+\cot A \) B. \( \csc A-\cot A \) ...

The value tanA2\tan \dfrac{A}{2} is equal to:
A. cscA+cotA\csc A+\cot A
B. cscAcotA\csc A-\cot A
C. secA+tanA\sec A+\tan A
D. secAtanA\sec A-\tan A

Explanation

Solution

Hint : Recall that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } , cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } , secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } .
Use the formulae: sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , cos2θ=cos2θsin2θ=12sin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta =1-2{{\sin }^{2}}\theta and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 .
Get an expression in terms of only sin and cos, and simplify.

Complete step-by-step answer :
The trigonometric ratio tanA2\tan \dfrac{A}{2} can be written as:
tanA2=sinA2cosA2\tan \dfrac{A}{2}=\dfrac{\sin \tfrac{A}{2}}{\cos \tfrac{A}{2}}
Multiplying both the numerator and the denominator by 2sinA22\sin \dfrac{A}{2} , we get:
tanA2=2sin2A22sinA2cosA2\tan \dfrac{A}{2}=\dfrac{2{{\sin }^{2}}\tfrac{A}{2}}{2\sin \tfrac{A}{2}\cos \tfrac{A}{2}}
Using the formulae sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , cos2θ=cos2θsin2θ=12sin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta =1-2{{\sin }^{2}}\theta , we get:
tanA2=1cosAsinA\tan \dfrac{A}{2}=\dfrac{1-\cos A}{\sin A}
Using the definitions cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , we can write it as:
tanA2=cscAcotA\tan \dfrac{A}{2}=\csc A-\cot A
The correct answer option is B. cscAcotA\csc A-\cot A
So, the correct answer is “Option B”.

Note : In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH\sin \theta =\dfrac{P}{H} , cosθ=BH\cos \theta =\dfrac{B}{H} , tanθ=PB\tan \theta =\dfrac{P}{B}
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } , cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } , tanθ=1cotθ\tan \theta =\dfrac{1}{\cot \theta }
Angle Sum formula:
sin(A±B)=sinAcosB±sinBcosA\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A
cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A+\sin 2B=2\sin (A+B)\cos (A-B)
sin2Asin2B=2cos(A+B)sin(AB)\sin 2A-\sin 2B=2\cos (A+B)\sin (A-B)
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B)