Question
Question: The value \( \tan \dfrac{A}{2} \) is equal to: A. \( \csc A+\cot A \) B. \( \csc A-\cot A \) ...
The value tan2A is equal to:
A. cscA+cotA
B. cscA−cotA
C. secA+tanA
D. secA−tanA
Solution
Hint : Recall that tanθ=cosθsinθ , cotθ=sinθcosθ , secθ=cosθ1 and cscθ=sinθ1 .
Use the formulae: sin2θ=2sinθcosθ , cos2θ=cos2θ−sin2θ=1−2sin2θ and sin2θ+cos2θ=1 .
Get an expression in terms of only sin and cos, and simplify.
Complete step-by-step answer :
The trigonometric ratio tan2A can be written as:
tan2A=cos2Asin2A
Multiplying both the numerator and the denominator by 2sin2A , we get:
⇒ tan2A=2sin2Acos2A2sin22A
Using the formulae sin2θ=2sinθcosθ , cos2θ=cos2θ−sin2θ=1−2sin2θ , we get:
⇒ tan2A=sinA1−cosA
Using the definitions cotθ=sinθcosθ and cscθ=sinθ1 , we can write it as:
⇒ tan2A=cscA−cotA
The correct answer option is B. cscA−cotA
So, the correct answer is “Option B”.
Note : In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=HP , cosθ=HB , tanθ=BP
tanθ=cosθsinθ , cotθ=sinθcosθ
cscθ=sinθ1 , secθ=cosθ1 , tanθ=cotθ1
Angle Sum formula:
sin(A±B)=sinAcosB±sinBcosA
cos(A±B)=cosAcosB∓sinAsinB
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(A−B)
sin2A−sin2B=2cos(A+B)sin(A−B)
cos2A+cos2B=2cos(A+B)cos(A−B)
cos2A−cos2B=−2sin(A+B)sin(A−B)