Question
Mathematics Question on Some Properties of Definite Integrals
The value(s ) of ∫01(1+x2)x4(1−x)4dx is are
A
722−π
B
1052
C
0
D
1571−23π
Answer
722−π
Explanation
Solution
LetI=∫01(1+x2)x4(1−x)4dx
=∫01(1+x2)(x4−1)(1−x)4+(1−x)4dx
=∫01(x2−1)(1−x)4dx+∫01(1+x)21+x2+2x)2
= \int^1 _ 0 \bigg \\{ ( x^2 - 1 ) ( 1 - x )^4 + ( 1 + x^2 ) - 4 \, x + \frac { 4 \, x^2 }{ ( 1 + x ^2 ) } \bigg \\} \, dx
=∫01((x2−1)(1−x)4+(1+x2)−4x+4−(1+x2)4x2)dx
=∫01(x6−4x5+5x4−4x2+4−1+x24)dx
=[7x7−64x6+55x5−34x3+4x−4tan−1x]01
=71−64+55−34+4−4(4π−0)=722−π