Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value(s ) of 01x4(1x)4(1+x2)dx\int^1_0 \frac { x^4 ( 1 - x )^4 }{ ( 1 + x^2 ) } \, dx is are

A

227π\frac{22}{7} - \pi

B

2105\frac {2}{105 }

C

0

D

71153π2\frac {71}{ 15} - \frac { 3 \pi }{ 2 }

Answer

227π\frac{22}{7} - \pi

Explanation

Solution

LetI=01x4(1x)4(1+x2)dxLet \, \, I = \int^1_0 \frac { x^4 ( 1 - x )^4 }{ ( 1 + x^2 ) } \, dx
=01(x41)(1x)4+(1x)4(1+x2)dx= \int^1 _ 0 \frac { ( x^4 - 1 )( 1 - x)^4 + ( 1 - x )^4 }{ ( 1 + x^2 ) } dx
=01(x21)(1x)4dx+011+x2+2x)2(1+x)2= \int^1_0 ( x^2 - 1 )( 1 - x )^4 \, dx + \int^1_0 \frac { 1 + x^2 + 2 \, x )^2 }{ ( 1 + x )^2 }
= \int^1 _ 0 \bigg \\{ ( x^2 - 1 ) ( 1 - x )^4 + ( 1 + x^2 ) - 4 \, x + \frac { 4 \, x^2 }{ ( 1 + x ^2 ) } \bigg \\} \, dx
=01((x21)(1x)4+(1+x2)4x+44x2(1+x2))dx= \int^1 _ 0 \bigg ( ( x^2 - 1 ) ( 1 - x )^4 + ( 1 + x^2 ) - 4 \, x + 4 - \frac { 4 \, x^2 }{ ( 1 + x ^2 ) } \bigg ) \, dx
=01(x64x5+5x44x2+441+x2)dx= \int^1_0 \bigg ( x^6 - 4 \, x^5 + 5 \, x^4 - 4 \, x^2 + 4 - \frac {4}{ 1 + x ^2 } \bigg ) \, dx
=[x774x66+5x554x33+4x4tan1x]01= \bigg [ \frac {x^7}{7} - \frac { 4 \, x^6}{ 6 } + \frac {5 \, x^5 } { 5 } - \frac { 4 \, x^3}{ 3} + 4 \, x - 4 \tan^{-1}\, x \bigg ]^1_0
=1746+5543+44(π40)=227π= \frac { 1 } { 7 } - \frac { 4 } { 6 } + \frac { 5 } { 5 } - \frac { 4 } { 3 } + 4 - 4 \bigg ( \frac {\pi}{ 4 } - 0 \bigg ) = \frac {22}{7} - \pi