Solveeit Logo

Question

Question: The value of \(z = \left( \frac{\sqrt{3}}{2} + \frac{i}{2} \right)^{5} + \left( \frac{\sqrt{3}}{2} -...

The value of z=(32+i2)5+(32i2)5z = \left( \frac{\sqrt{3}}{2} + \frac{i}{2} \right)^{5} + \left( \frac{\sqrt{3}}{2} - \frac{i}{2} \right)^{5} is.

A

16

B

– 16

C

32

D

– 32

Answer

32

Explanation

Solution

z12+z22+z32=z1z2+z2z3+z3z1z_{1}^{2} + z_{2}^{2} + z_{3}^{2} = z_{1}z_{2} + z_{2}z_{3} + z_{3}z_{1} and 12+12i3- \frac{1}{2} + \frac{1}{2}i\sqrt{3}

(1+i)8+(1i)8=(2i)4+(2i)4\Rightarrow ( 1 + i ) ^ { 8 } + ( 1 - i ) ^ { 8 } = ( 2 i ) ^ { 4 } + ( - 2 i ) ^ { 4 } ω1000=ω999ω=(ω3)333ω=ω=12+32i\omega^{1000} = \omega^{999}\omega = (\omega^{3})^{333}\omega = \omega = - \frac{1}{2} + \frac{\sqrt{3}}{2}i

p<0p < 0