Solveeit Logo

Question

Question: The value of \[xyz = \dfrac{{15}}{2}{\text{ or }}\dfrac{{18}}{5}\] according as the series \(a,x,y,z...

The value of xyz=152 or 185xyz = \dfrac{{15}}{2}{\text{ or }}\dfrac{{18}}{5} according as the series a,x,y,z,ba,x,y,z,b is in arithmetic progression or harmonic progression. Then abab is equal to?
A) 11
B) 22
C) 33
D) 44

Explanation

Solution

A sequence of numbers is called Arithmetic Sequence/Progression if every term is added by a fixed number to get the next term. This fixed number is called the common difference. A sequence is called Harmonic progression, if every term of the progression is reciprocals of the terms of some Arithmetic Progression. So we can equate the two equations forxyzxyz. Simplifying we get the solution.
Formula used:
If x1,x2,x3,x4,x5{x_1},{x_2},{x_3},{x_4},{x_5} form an Arithmetic progression with common difference dd, then
i)xi=xi1+di){x_i} = {x_{i - 1}} + d
ii)ii)Middle term formula
x3=x1+x52=x2+x42{x_3} = \dfrac{{{x_1} + {x_5}}}{2} = \dfrac{{{x_2} + {x_4}}}{2}
iii)d=term differenceposition differenceiii)d = \dfrac{{{\text{term difference}}}}{{{\text{position difference}}}}
iv)1x1,1x2,1x3,...iv)\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}},\dfrac{1}{{{x_3}}},... form an Harmonic progression.

Complete step-by-step answer:
Given that the value of xyz=152 or 185xyz = \dfrac{{15}}{2}{\text{ or }}\dfrac{{18}}{5} according as the series a,x,y,z,ba,x,y,z,b is in arithmetic progression or harmonic progression.
We need to find abab.
So we try to express the given xyzxyz in terms of a,ba,b.
The common difference, d=term differenceposition differenced = \dfrac{{{\text{term difference}}}}{{{\text{position difference}}}}
d=ba4\Rightarrow d = \dfrac{{b - a}}{4}, since bb is the fourth term after aa.
If x1,x2,x3,x4,x5{x_1},{x_2},{x_3},{x_4},{x_5} form an Arithmetic progression, then by Middle term formula,
x3=x2+x42{x_3} = \dfrac{{{x_2} + {x_4}}}{2}
Since yy is the middle term of a,x,y,z,ba,x,y,z,b we have by middle term formula, y=a+b2y = \dfrac{{a + b}}{2}
Now let us find xx.
xx is got by adding the common difference to aa.
x=a+ba4=4a+ba4\Rightarrow x = a + \dfrac{{b - a}}{4} = \dfrac{{4a + b - a}}{4}
x=3a+b4\Rightarrow x = \dfrac{{3a + b}}{4}
Also zz is obtained by adding common difference to yy.
This gives z=y+dz = y + d.
Substituting we get,
z=a+b2+ba4\Rightarrow z = \dfrac{{a + b}}{2} + \dfrac{{b - a}}{4}
Simplifying we get,
z=2a+2b4+ba4\Rightarrow z = \dfrac{{2a + 2b}}{4} + \dfrac{{b - a}}{4}
z=a+3b4\Rightarrow z = \dfrac{{a + 3b}}{4}
Now consider xyzxyz.
xyz=3a+b4×a+b2×a+3b4\Rightarrow xyz = \dfrac{{3a + b}}{4} \times \dfrac{{a + b}}{2} \times \dfrac{{a + 3b}}{4}
In the question it is given that xyz=152xyz = \dfrac{{15}}{2}
Substituting we get,
xyz=3a+b4×a+b2×a+3b4=152(i)\Rightarrow xyz = \dfrac{{3a + b}}{4} \times \dfrac{{a + b}}{2} \times \dfrac{{a + 3b}}{4} = \dfrac{{15}}{2} - - - (i)

Now consider the sequence as Harmonic progression.
This gives 1a,1x,1y,1z,1b\dfrac{1}{a},\dfrac{1}{{{x_{}}}},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b} as an arithmetic progression.
So by middle term formula we have,
1y=1a+1b2\dfrac{1}{y} = \dfrac{{\dfrac{1}{a} + \dfrac{1}{b}}}{2}
1y=12a+12b\Rightarrow \dfrac{1}{y} = \dfrac{1}{{2a}} + \dfrac{1}{{2b}}
Simplifying we get,
1y=2a+2b2a×2b\Rightarrow \dfrac{1}{y} = \dfrac{{2a + 2b}}{{2a \times 2b}}
1y=2(a+b)4ab\Rightarrow \dfrac{1}{y} = \dfrac{{2(a + b)}}{{4ab}}
Cancelling 22 from numerator and denominator we have,
1y=a+b2ab\Rightarrow \dfrac{1}{y} = \dfrac{{a + b}}{{2ab}}
Taking reciprocals,
y=2aba+b\Rightarrow y = \dfrac{{2ab}}{{a + b}}
Again considering 1x\dfrac{1}{x} as a middle term we have,
1x=1a+1y2\dfrac{1}{x} = \dfrac{{\dfrac{1}{a} + \dfrac{1}{y}}}{2}
1x=12a+12y\Rightarrow \dfrac{1}{x} = \dfrac{1}{{2a}} + \dfrac{1}{{2y}}
Substituting for yy we get,
1x=12a+12(2aba+b)\Rightarrow \dfrac{1}{x} = \dfrac{1}{{2a}} + \dfrac{1}{{2(\dfrac{{2ab}}{{a + b}})}}
Simplifying we get,
1x=12a+a+b4ab\Rightarrow \dfrac{1}{x} = \dfrac{1}{{2a}} + \dfrac{{a + b}}{{4ab}}
Multiplying numerator and denominator of 12a\dfrac{1}{{2a}} by 2b2b we get,
1x=2b4ab+a+b4ab\Rightarrow \dfrac{1}{x} = \dfrac{{2b}}{{4ab}} + \dfrac{{a + b}}{{4ab}}
1x=2b+a+b4ab\Rightarrow \dfrac{1}{x} = \dfrac{{2b + a + b}}{{4ab}}
Simplifying we get,
1x=a+3b4ab\Rightarrow \dfrac{1}{x} = \dfrac{{a + 3b}}{{4ab}}
Taking reciprocals we get,
x=4aba+3b\Rightarrow x = \dfrac{{4ab}}{{a + 3b}}
Now we can find zz in a similar way.
1z=1y+1b2\dfrac{1}{z} = \dfrac{{\dfrac{1}{y} + \dfrac{1}{b}}}{2}
1z=12y+12b\Rightarrow \dfrac{1}{z} = \dfrac{1}{{2y}} + \dfrac{1}{{2b}}
Substituting for yy we get,
1z=12(2aba+b)+12b\Rightarrow \dfrac{1}{z} = \dfrac{1}{{2(\dfrac{{2ab}}{{a + b}})}} + \dfrac{1}{{2b}}
1z=a+b4ab+12b\Rightarrow \dfrac{1}{z} = \dfrac{{a + b}}{{4ab}} + \dfrac{1}{{2b}}
Multiplying numerator and denominator of 12b\dfrac{1}{{2b}} by 2a2a,
1z=a+b4ab+2a4ab\Rightarrow \dfrac{1}{z} = \dfrac{{a + b}}{{4ab}} + \dfrac{{2a}}{{4ab}}
1z=a+b+2a4ab\Rightarrow \dfrac{1}{z} = \dfrac{{a + b + 2a}}{{4ab}}
Simplifying we get,
1z=3a+b4ab\Rightarrow \dfrac{1}{z} = \dfrac{{3a + b}}{{4ab}}
Taking reciprocals we get,
z=4ab3a+b\Rightarrow z = \dfrac{{4ab}}{{3a + b}}
We have xyz=185xyz = \dfrac{{18}}{5} when the series is in harmonic progression.
Substituting we get,
xyz=4aba+3b×2aba+b×4ab3a+b=185(ii)xyz = \dfrac{{4ab}}{{a + 3b}} \times \dfrac{{2ab}}{{a + b}} \times \dfrac{{4ab}}{{3a + b}} = \dfrac{{18}}{5} - - - (ii)
Multiplying (i)&(ii)(i)\& (ii) we get,
3a+b4×a+b2×a+3b4×4aba+3b×2aba+b×4ab3a+b=152×185\dfrac{{3a + b}}{4} \times \dfrac{{a + b}}{2} \times \dfrac{{a + 3b}}{4} \times \dfrac{{4ab}}{{a + 3b}} \times \dfrac{{2ab}}{{a + b}} \times \dfrac{{4ab}}{{3a + b}} = \dfrac{{15}}{2} \times \dfrac{{18}}{5}
Simplifying we get,
ab×ab×ab=3×9\Rightarrow ab \times ab \times ab = 3 \times 9
(ab)3=27\Rightarrow {(ab)^3} = 27
Taking cube root we get,
ab=273=3\Rightarrow ab = \sqrt[3]{{27}} = 3
Therefore the answer is option C.

Note: We have to be clear about the definitions of arithmetic and harmonic progressions. We calculate the terms by using the middle term formulas. For every three consecutive terms of an arithmetic sequence, the second term is always the mean of first and third.