Solveeit Logo

Question

Question: The value of x+y+z=15, if a,x,y,z,b are in A.P, while the value of \(\dfrac{1}{x}+\dfrac{1}{y}+\dfra...

The value of x+y+z=15, if a,x,y,z,b are in A.P, while the value of 1x+1y+1z=53\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3} if a,x,y,z,ba,x,y,z,b are in H.P. Find a×ba\times b.

Explanation

Solution

Hint: For the above question we will use the concept that if ‘a’ and ‘b’ are two terms of an A.P and there are ‘n’ arithmetic means say x1,x2,x3,......xn{{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}} between them then their sum is equal to n time the average value of ‘a’ and ‘b’.
x1+x2+x3+......+xn=n(a+b2)\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)
Also, we know that if a1,a2,a3,......{{a}_{1}},{{a}_{2}},{{a}_{3}},...... are in H.P in 1a1,1a2,1a3,.....\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},..... must be in A.P, we will also use this concept.

Complete step-by-step solution -
We have been given that if x+y+z=15x+y+z=15, if a,x,y,z,ba,x,y,z,b are in A.P, while the value of 1x+1y+1z=53\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3} if a,x,y,z,ba,x,y,z,b are in H.P.
We know that if a and b are in A.P and there are n arithmetic mean say x1,x2,x3,......xn{{x}_{1}},{{x}_{2}},{{x}_{3}},......{{x}_{n}} between them then,
x1+x2+x3...........+xn=n(a+b2)\Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}........... +{{x}_{n}}=n\left( \dfrac{a+b}{2} \right)
We have 3 arithmetic mean between a and b which are x,y,zx,y,z.
x+y+z=3(a+b2) 15=3(a+b2) 15×23=a+b 10=a+b a+b=10...........(1) \begin{aligned} & \Rightarrow x+y+z=3\left( \dfrac{a+b}{2} \right) \\\ & \Rightarrow 15=3\left( \dfrac{a+b}{2} \right) \\\ & \Rightarrow \dfrac{15\times 2}{3}=a+b \\\ & \Rightarrow 10=a+b \\\ & \Rightarrow a+b=10...........\left( 1 \right) \\\ \end{aligned}
We have 1x+1y+1z=53\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{3} if a,x,y,z,ba,x,y,z,b are in H.P.
We know that if a1,a2,a3,......an{{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}} are in H.P then their reciprocal i.e., 1a1,1a2,1a3,.....1an\dfrac{1}{{{a}_{1}}},\dfrac{1}{{{a}_{2}}},\dfrac{1}{{{a}_{3}}},.....\dfrac{1}{{{a}_{n}}} must be in A.P.
1a,1x,1y,1z,1b\Rightarrow \dfrac{1}{a},\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z},\dfrac{1}{b} are in A.P.
We know that the sum of ‘n’ arithmetic mean between a and b of an A.P is given by,
x1+x2+x3+......+xn=n(a+b2) 1x+1y+1z=3(1a+1b2) 53=3(a+b2ab) 5×23×3=a+bab \begin{aligned} & {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+......+{{x}_{n}}=n\left( \dfrac{a+b}{2} \right) \\\ & \Rightarrow \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\left( \dfrac{\dfrac{1}{a}+\dfrac{1}{b}}{2} \right) \\\ & \Rightarrow \dfrac{5}{3}=3\left( \dfrac{a+b}{2ab} \right) \\\ & \Rightarrow \dfrac{5\times 2}{3\times 3}=\dfrac{a+b}{ab} \\\ \end{aligned}
Using equation (1) we have (a+b)=10\left( a+b \right)=10.
109=10ab ab=9 \begin{aligned} & \Rightarrow \dfrac{10}{9}=\dfrac{10}{ab} \\\ & \Rightarrow ab=9 \\\ \end{aligned}
Therefore, the required value of (a×b)\left( a\times b \right)is equal to 9.

Note: Remember the point that the reciprocal of the term of H.P are in A.P. If we have x,y,zx,y,z are in H.P then 1x,1y,1z\dfrac{1}{x},\dfrac{1}{y},\dfrac{1}{z} must be in A.P. Also, remember that Arithmetic Progression is a sequence of numbers that is constant and it is denoted by (A.P) in short form whereas H.P is Harmonic Progression.