Solveeit Logo

Question

Question: The value of x so that the matrix \(\begin{bmatrix} x + a & b & c \\ a & x + b & c \\ a & b & x + c ...

The value of x so that the matrix [x+abcax+bcabx+c]\begin{bmatrix} x + a & b & c \\ a & x + b & c \\ a & b & x + c \end{bmatrix}has rank 3 is

A

x0x \neq 0

B

x=a+b+cx = a + b + c

C

x0x \neq 0and x(a+b+c)x \neq - (a + b + c)

D

x=0,x=a+b+cx = 0,x = a + b + c

Answer

x0x \neq 0and x(a+b+c)x \neq - (a + b + c)

Explanation

Solution

Since rank is 3, A3×30|A|_{3 \times 3} \neq 0, x+abcax+bcabx+c3×30\left| \begin{matrix} x + a & b & c \\ a & x + b & c \\ a & b & x + c \end{matrix} \right|_{3 \times 3} \neq 0

x+a+b+cbcx+a+b+cx+bcx+a+b+cbx+c0\left| \begin{matrix} x + a + b + c & b & c \\ x + a + b + c & x + b & c \\ x + a + b + c & b & x + c \end{matrix} \right| \neq 0, Applying

(C1C1+C2+C3)(C_{1} \rightarrow C_{1} + C_{2} + C_{3})

(x+a+b+c)1bc1x+bc1bx+c0(x + a + b + c)\left| \begin{matrix} 1 & b & c \\ 1 & x + b & c \\ 1 & b & x + c \end{matrix} \right| \neq 0

x+a+b+c0,1bc1x+bc1bx+c0x + a + b + c \neq 0,\left| \begin{matrix} 1 & b & c \\ 1 & x + b & c \\ 1 & b & x + c \end{matrix} \right| \neq 0

x(a+b+c)x \neq - (a + b + c), 0xc0xx1bx+c0\left| \begin{matrix} 0 & - x & c \\ 0 & x & - x \\ 1 & b & x + c \end{matrix} \right| \neq 0x0x \neq 0