Solveeit Logo

Question

Mathematics Question on Matrices

The value of x, so that the matrix =[x+abc\[0.3em]ax+bc\[0.3em]abx+c]=\begin{bmatrix} x+a &b& c \\\[0.3em] a& x+b & c \\\[0.3em] a & b & x+c \end{bmatrix} has rank 3 , is

A

x0x\neq 0

B

x = a + b + c

C

x0x\neq\,0\, and x(a+b+c)\,x\neq -(a+b+c)

D

x=0x = 0 and a=a+b+c. a = a + b+ c .

Answer

x0x\neq\,0\, and x(a+b+c)\,x\neq -(a+b+c)

Explanation

Solution

Since rank = 3. \therefore x+abc aa+bc abx+c0\begin{vmatrix}x+a&b&c\\\ a&a+b&c\\\ a&b&x+c\end{vmatrix} \ne 0 Operate C1+C2+C3C_1 + C_2 + C_3 x+a+b+cbc x+a+b+cx+bc x+a+b+cbx+c0\begin{vmatrix}x+a+b+c&b&c\\\ x+a+b+c&x+b&c\\\ x+a+b+c&b&x+c\end{vmatrix} \neq 0 \Rightarrow (x+a+b+c)1bc 1x+bc 1bx+c0(x + a + b + c) \begin{vmatrix}1&b&c\\\ 1&x+b&c\\\ 1&b&x+c\end{vmatrix} \neq 0 \Rightarrow x+a+b+c0x + a +b + c \, \neq 0 and 1bc 0x0 00x0x20x0\begin{vmatrix}1&b&c\\\ 0&x&0\\\ 0&0&x\end{vmatrix} \ne 0 \Rightarrow x^{2} \ne 0 \Rightarrow x \ne 0 Then x0,x+a+b+c0x \neq 0, x + a + b + c \neq 0 i.e.,x(a+b+c)i.e., x \neq -(a + b + c)