Solveeit Logo

Question

Question: The value of \(x\) obtained from the equation \[ \begin{vmatrix} x + \alpha & \beta & \gamma \\ \...

The value of xx obtained from the equation

x+αβγγx+βααβx+γ=0\begin{vmatrix} x + \alpha & \beta & \gamma \\ \gamma & x + \beta & \alpha \\ \alpha & \beta & x + \gamma \end{vmatrix} = 0

will be

Answer

x=0x=0 (double root) or x=(α+β+γ)x=-(\alpha+\beta+\gamma)

Explanation

Solution

Step 1. Let AA be the matrix

A=(αβγγβααβγ).A = \begin{pmatrix} \alpha & \beta & \gamma\\ \gamma & \beta & \alpha\\ \alpha & \beta & \gamma \end{pmatrix}.

We need det(xI+A)=0\det(xI + A)=0.

Step 2. Note that row 1 and row 3 of AA are identical, so \rank(A)=2\rank(A)=2. Hence one eigenvalue of AA is 00. Also

\tr(A)=α+β+γ,(principal minors of order 2)=0,det(A)=0.\tr(A)=\alpha+\beta+\gamma,\quad \sum \text{(principal minors of order 2)} = 0,\quad \det(A)=0.

The characteristic polynomial of AA is

λ3(α+β+γ)λ2+0λ0=λ2(λ(α+β+γ)).\lambda^3 - (\alpha+\beta+\gamma)\,\lambda^2 + 0\cdot\lambda - 0 = \lambda^2(\lambda - (\alpha+\beta+\gamma)).

Thus the eigenvalues of AA are 00 (double) and α+β+γ\alpha+\beta+\gamma.

Step 3. The eigenvalues of xI+AxI+A are x+0x+0 (twice) and x+(α+β+γ)x+(\alpha+\beta+\gamma). Hence

det(xI+A)=x2(x+(α+β+γ)).\det(xI + A) = x^2\bigl(x + (\alpha+\beta+\gamma)\bigr).

Setting this to zero gives

x2(x+(α+β+γ))=0x=0  (double)orx=(α+β+γ).x^2\bigl(x + (\alpha+\beta+\gamma)\bigr)=0 \quad\Longrightarrow\quad x=0\;\text{(double)}\quad\text{or}\quad x=-(\alpha+\beta+\gamma).