Solveeit Logo

Question

Mathematics Question on Quadratic Equations

The value of x obtained from the equation x+αβγ γx+βα αβx+γ=0\begin{vmatrix}x+\alpha&\beta&\gamma\\\ \gamma&x+\beta&\alpha\\\ \alpha&\beta&x+\gamma\end{vmatrix}=0 will be

A

0 and (α+β+γ)-\left(\alpha+\beta+\gamma\right)

B

0 and α+β+γ\alpha+\beta+\gamma

C

1 and (αβγ)\left(\alpha-\beta-\gamma\right)

D

0andα2+β+γ20 and \alpha^{2}+\beta+\gamma^{2}

Answer

0 and (α+β+γ)-\left(\alpha+\beta+\gamma\right)

Explanation

Solution

Givenx+αβγ γx+βα αβx+γ=0Given \begin{vmatrix}x+\alpha&\beta&\gamma\\\ \gamma&x+\beta&\alpha\\\ \alpha&\beta&x+\gamma\end{vmatrix}=0 Operate C1C1+C2+C3C_{1} \to C_{1}+C_{2}+C_{3} x+α+β+γβγ x+α+β+γx+βα x+α+β+γβx+γ=0\begin{vmatrix}x+\alpha+\beta+\gamma&\beta&\gamma\\\ x+\alpha+\beta+\gamma&x+\beta&\alpha\\\ x+\alpha+\beta+\gamma&\beta&x+\gamma\end{vmatrix}=0 =(x+α+β+γ)1βγ 1x+βα 1βx+γ=0=\left(x+\alpha+\beta+\gamma\right) \begin{vmatrix}1&\beta&\gamma\\\ 1&x+\beta&\alpha\\\ 1&\beta&x+\gamma\end{vmatrix}=0 x+α+β+γ=0x=(α+β+γ)\Rightarrow\quad x+\alpha+\beta+\gamma=0 \Rightarrow\, x=-\left(\alpha+\beta+\gamma\right) Again if 1βγ 1x+βα 1βγ=01βγ 0xαγ 00x=0\begin{vmatrix}1&\beta&\gamma\\\ 1&x+\beta&\alpha\\\ 1&\beta&\gamma\end{vmatrix}=0 \Rightarrow \begin{vmatrix}1&\beta&\gamma\\\ 0&x&\alpha-\gamma\\\ 0&0&x\end{vmatrix}=0 x2=0x=0\Rightarrow\quad x^{2}=0 \Rightarrow x=0 \therefore\quad Solutions of the equation are x = 0, (α+β+γ)-\left(\alpha+\beta+\gamma\right)