Solveeit Logo

Question

Question: The value of x in the given equation \(\frac{p\beta - \alpha q}{q - \beta}\)is....

The value of x in the given equation

pβαqqβ\frac{p\beta - \alpha q}{q - \beta}is.

A

x2cx+d=0x^{2} - cx + d = 0

B

x2ax+b=0x^{2} - ax + b = 0

C

2(b+d)=2(b + d) =

D

a+ca + c

Answer

x2ax+b=0x^{2} - ax + b = 0

Explanation

Solution

Equation, 121 - \sqrt{2}

1+21 + \sqrt{2}

1±21 \pm \sqrt{2}

2x+227x/(x1)=92^{x + 2}27^{x/(x - 1)} = 91log23,21 - \log_{2}3,2

Taking log both sides

log2(23),6mu1\log_{2}\left( \frac{2}{3} \right),\mspace{6mu} 1

2,22, - 2

2,6mu1log3log2- 2,\mspace{6mu} 1 - \frac{\log 3}{\log 2}

α\alpha

β\betax2+x+1=0x^{2} + x + 1 = 0

α19,β7\alpha^{19},\beta^{7}

Trick : Cheak the equation with options then only option (2) satisfies the equation.