Solveeit Logo

Question

Question: The value of x for which the matrix A = \(\begin{bmatrix} 2/x & - 1 & 2 \\ 1 & x & 2x^{2} \\ 1 & 1/x...

The value of x for which the matrix A = [2/x121x2x211/x2]\begin{bmatrix} 2/x & - 1 & 2 \\ 1 & x & 2x^{2} \\ 1 & 1/x & 2 \end{bmatrix}is singular is-

A

± 1

B

± 2

C

± 3

D

None of these

Answer

± 1

Explanation

Solution

We have

|A| = (2x)\left( \frac{2}{x} \right) x2x21/x2\left| \begin{array} { c c } \mathrm { x } & 2 \mathrm { x } ^ { 2 } \\ 1 / \mathrm { x } & 2 \end{array} \right| 12x212\left| \begin{matrix} 1 & 2x^{2} \\ 1 & 2 \end{matrix} \right|+ 2 1x11/x\left| \begin{matrix} 1 & x \\ 1 & 1/x \end{matrix} \right|

= 2x\frac{2}{x} (0) + 2 –2x2 + (1xx)\left( \frac{1}{x} - x \right)= 2x(1x2)+2(1x2)x\frac{2x(1 - x^{2}) + 2(1 - x^{2})}{x}

= 2(x+1)2(1x)x\frac{2(x + 1)^{2}(1 - x)}{x}

Now, |A| = 0 ̃ x = ± 1