Solveeit Logo

Question

Mathematics Question on Application of derivatives

The value of xx for which f(x)=x36x236x+7f(x) = x^3 - 6x^2 - 36x + 7 is increasing, belong to

A

(1,0)(1,5)4(-1, 0) \cup (1, 5)4

B

(2,0)(1,6)(-2, 0) \cup (1, 6)

C

(,2)(6,)(\infty, 2) \cup (6, \infty)

D

(2,6)(-2, 6)

Answer

(,2)(6,)(\infty, 2) \cup (6, \infty)

Explanation

Solution

f(x)=x36x236x+7f\left(x\right)=x^{3 } -6x^{2} -36x+7
f(x)=3x212x36f'\left(x\right)= 3x^{2}-12x -36
Now, f(x)=0f'\left(x\right) = 0
3x212x36=0\Rightarrow 3x^{2} - 12x -36 = 0
x=2,6\Rightarrow x=-2,6

Hence,f(x) is increasing in (2)(6,)(\infty 2) \cup (6, \infty)