Solveeit Logo

Question

Question: The value of $|\vec{A}+\vec{B}-\vec{C}+\vec{D}|$ can be zero if :-...

The value of A+BC+D|\vec{A}+\vec{B}-\vec{C}+\vec{D}| can be zero if :-

A

$|\vec{A}|=5, |\vec{B}|=3, |\vec{C}|=4;|\vec{D}|=13

B

$|\vec{A}|=2\sqrt{2}, |\vec{B}|=2, |\vec{C}|=2;|\vec{D}|=5

C

$|\vec{A}|=2\sqrt{2}, |\vec{B}|=2, |\vec{C}|=2;|\vec{D}|=10

D

$|\vec{A}|=5, |\vec{B}|=4, |\vec{C}|=3; |\vec{D}|=8

Answer

Option B: A=22,B=2,C=2;D=5|\vec{A}|=2\sqrt{2}, |\vec{B}|=2, |\vec{C}|=2;|\vec{D}|=5

Explanation

Solution

The value of A+BC+D|\vec{A}+\vec{B}-\vec{C}+\vec{D}| can be zero if the vectors A\vec{A}, B\vec{B}, C-\vec{C}, and D\vec{D} can be arranged to form a closed polygon. This means their vector sum is the zero vector:

A+BC+D=0\vec{A}+\vec{B}-\vec{C}+\vec{D} = \vec{0}

For four vectors with magnitudes v1,v2,v3,v4v_1, v_2, v_3, v_4 to form a closed quadrilateral, the sum of the magnitudes of any three vectors must be greater than or equal to the magnitude of the fourth vector. Let the magnitudes of A,B,C,D\vec{A}, \vec{B}, \vec{C}, \vec{D} be a,b,c,da, b, c, d respectively. The magnitudes of the four vectors in the sum are A=a|\vec{A}|=a, B=b|\vec{B}|=b, C=c|-\vec{C}|=c, and D=d|\vec{D}|=d.

The condition for these four magnitudes to form a closed quadrilateral is:

  1. a+b+cda+b+c \ge d
  2. a+b+dca+b+d \ge c
  3. a+c+dba+c+d \ge b
  4. b+c+dab+c+d \ge a

Checking option B: A=22,B=2,C=2,D=5|\vec{A}|=2\sqrt{2}, |\vec{B}|=2, |\vec{C}|=2, |\vec{D}|=5.

22+2+25    22+45    2212\sqrt{2} + 2 + 2 \ge 5 \implies 2\sqrt{2} + 4 \ge 5 \implies 2\sqrt{2} \ge 1 which is true.

22+2+52    22+722\sqrt{2} + 2 + 5 \ge 2 \implies 2\sqrt{2} + 7 \ge 2 which is true.

22+5+22    22+722\sqrt{2} + 5 + 2 \ge 2 \implies 2\sqrt{2} + 7 \ge 2 which is true.

2+2+522    9222 + 2 + 5 \ge 2\sqrt{2} \implies 9 \ge 2\sqrt{2} which is true.

All conditions are satisfied.

Note: Option D also satisfies the condition, which may indicate an error in the question or answer key.