Solveeit Logo

Question

Question: The value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})}...

The value of limx(20x119(5x))1x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} is_________.

Explanation

Solution

Hint: You can solve this problem by taking logarithm and after that you will come to know that you have to use L-Hospital’s Rule

Step by step solution:
We will rewrite the given equation first,
limx(20x119(5x))1x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}
Consider it as L,
L=limx(20x119(5x))1x\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}
We will put limits directly,
L=(20119(5))1\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}
L=()0\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}
As it is an indeterminate form therefore we should solve it by using different method,
L=limx(20x119(5x))1x\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}
Taking log on both sides, we will get
logL=log[limx(20x119(5x))1x]\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]
As we all know that ‘log’ can be inserted in limits,
logL=limx[log(20x119(5x))1x]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]
To proceed further we should know some rules of logarithm which are given below,
Formulae:
1.log(mn)=n×logm\log ({{m}^{n}})=n\times \log m
2.log(mn)=logmlogn\log \left( \dfrac{m}{n} \right)=\log m-\log n
3.log(m×n)=logm+logn\log \left( m\times n \right)=\log m+\log n
By using formula 1 we can write log L as shown below,
logL=limx[1x×log(20x119(5x))]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]
By using formula 2 we can write log L as shown below,
logL=limx1x×[log(20x1)log(19×5x)]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]
By using formula 3 we can write log L as shown below,
logL=limx1x×[log(20x1)[log19+log5x]]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]
By using formula 1 again we can write log L as shown below,
logL=limx1x×[log(20x1)[log19+x×log5]]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]
Now we will give negative sign inside the bracket,
logL=limx[log(20x1)log19x×log5]x\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}
We will divide each term by x which is in the denominator to simplify the expression,
logL=limx[log(20x1)xlog19xx×log5x]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]
logL=limx[log(20x1)xlog19xlog5]\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]
As we all know limits can be given separately for each term, therefore we can write above equation as,
logL=limxlog(20x1)xlimxlog19xlimxlog5\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5
If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,
logL=limxlog(20x1)xlimxlog19xlog5\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5………………………………………………. (a)
(i) (ii)
We should solve (i) and (ii) separately,
Consider,
L1=limxlog(20x1)xL1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}
If we put limits directly we will get,
L1=log(201)\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }
L1=\therefore L1=\dfrac{\infty }{\infty }
As it is giving a \dfrac{\infty }{\infty } form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,
L-Hospital’s Rule:
If a limit of a function is giving an indeterminate form then,
limxaf(x)g(x)=limxaddxf(x)ddxg(x)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)},
And we can take the derivatives till the denominator is not becoming zero if we put the limits.

By using L-Hospital’s Rule we can write L1 as,
L1=limx[ddx[log(20x1)]ddx(x)]\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]
Before proceeding further we should know the formulae of derivatives given below,

Formulae:

4. ddx(logx)=1x\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}

5. ddx(ax)=ax×loga\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a

6. ddx(x)=1\dfrac{d}{dx}\left( x \right)=1

By using formula 4 and 6 we can write L1 as,
L1=limx[1(20x1)×ddx(20x1)1]\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]
By using formula 5 we can write above equation as,
L1=limx[1(20x1)×20x×log20]\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]
As we observe above equation we can easily see that the denominator is still not vanished and still
maintaining the \dfrac{\infty }{\infty } form so we have to use L-Hospitals rule again. But it will be
lengthy as solved above.
To solve it shortly and to save time we can just take 20x{{20}^{x}}common from denominator, therefore
we can write above equation as,
L1=limx[20x×log2020x(1120x)]\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]
L1=limx[log20(1120x)]\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]
Now put the limits directly to get the answer,
L1=log20(1120)\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}
L1=log20(11)\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}
As we all know that the value of 1\dfrac{1}{\infty } is 0,
L1=log20(10)\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}
L1=log20\therefore L1=\log 20……………………………………………………………….. (b)
Consider,
L2=limxlog19xL2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}
If we put the limits directly we will get,
L2=log19\therefore L2=\dfrac{\log 19}{\infty }
As we all know that the value of 1\dfrac{1}{\infty } is 0, therefore above equation will become,
L2=0×log19\therefore L2=0\times \log 19
L2=0\therefore L2=0………………………………………………………………….. (c)
Now put the value of equation (b) and (c) in equation (a) we will get,
logL=limxlog(20x1)xlimxlog19xlog5\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5
logL=log200log5\therefore \log L=\log 20-0-\log 5
logL=log20log5\therefore \log L=\log 20-\log 5
If we use the formula 2 in above equation we will get,
logL=log205\therefore \log L=\log \dfrac{20}{5}
logL=log4\therefore \log L=\log 4
We will take antilog on both sides to get the final answer,
L=4\therefore L=4
limx(20x119(5x))1x=4\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4
Therefore the value of limx(20x119(5x))1x\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} is 4.
Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity
and not tending to Zero and therefore the formula is not applicable in the above case.
limx0(ax1)1x=e\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e but limx(20x1)1xe\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e