Solveeit Logo

Question

Question: The value of \(\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}...

The value of limnr=1nr2n3+n2+r\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}} equals:
A. 13\dfrac{1}{3}
B. 12\dfrac{1}{2}
C. 23\dfrac{2}{3}
D. 1

Explanation

Solution

The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if limxah(x)=limxag(x)=L\underset{x\to a}{\mathop{\lim }}\,h(x)=\underset{x\to a}{\mathop{\lim }}\,g(x)=L , then limxaf(x)=L\underset{x\to a}{\mathop{\lim }}\,f(x)=L .
The sum r=1nr2=n(n+1)(2n+1)6\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6} .

Complete step-by-step answer:
Let’s say that Sn=r=1nr2n3+n2+r{{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}} .
Since 0 < r ≤ n, we can say that:
n3+n2+nn3+n2+rn3{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}
After reciprocal them, sign of inequality changes,
1n3+n2+n1n3+n2+r1n3\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}
Multiply by r2, we get
r2n3+n2+nr2n3+n2+rr2n3\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}
Taking submission from r=1 to r=n,
r=1nr2n3+n2+nr=1nr2n3+n2+rr=1nr2n3\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}
On solving,
1n3+n2+nr=1nr2Sn1n3r=1nr2\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}
1n3+n2+n[n(n+1)(2n+1)6]Sn1n3[n(n+1)(2n+1)6]\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]
On applying the limits, we get:
16limn[2n3+3n2+nn3+n2+n]limnSn16limn[2n3+3n2+nn3]\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]
Dividing the numerator and the denominator by the highest power of n, we get:
16limn[2+3n+1n21+1n+1n2]limnSn16limn[2+3n+1n21]\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]
Now, as n,1n0n\to \infty ,\dfrac{1}{n}\to 0 .
16[2+0+01+0+0]limnSn16[2+0+01]\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]
16(2)limnSn16(2)\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)
13limnSn13\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}
Therefore, by using the squeeze theorem, limnSn=limnr=1nr2n3+n2+r=13\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3} .
The correct answer option is A.

Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.