Solveeit Logo

Question

Question: The value of trigonometric expression \[\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }...

The value of trigonometric expression sin36sin72sin108sin144\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }} is equal to
(a) 14\dfrac{1}{4}
(b) 116\dfrac{1}{16}
(c) 34\dfrac{3}{4}
(d) 516\dfrac{5}{16}

Explanation

Solution

Hint: Convert all the angles in the range of 090{{0}^{\circ }}-{{90}^{\circ }}. Simplify the given expression by substituting the values of sin36\sin {{36}^{\circ }} and sin72\sin {{72}^{\circ }}, which are sin36=10254\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4} and sin72=10+254\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}.

Complete step-by-step answer:
We have to calculate the value of sin36sin72sin108sin144\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}.
We will firstly simplify the given expression by writing all the angles in the range of 090{{0}^{\circ }}-{{90}^{\circ }}. We can write 108=18072{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }} and 144=18036{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}.
Thus, we have sin36sin72sin108sin144=sin36sin72sin(18072)sin(18036)\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }}).
We know that sin(180x)=sinx\sin \left( {{180}^{\circ }}-x \right)=\sin x.
Thus, we have sin(18072)=sin72\sin ({{180}^{\circ }}-{{72}^{\circ }})=\sin {{72}^{\circ }} and sin(18036)=sin36\sin ({{180}^{\circ }}-{{36}^{\circ }})=\sin {{36}^{\circ }}.
So, we have sin36sin72sin108sin144=sin36sin72sin(18072)sin(18036)=sin236sin272\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin ({{180}^{\circ }}-{{72}^{\circ }})\sin ({{180}^{\circ }}-{{36}^{\circ }})={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}.
We know that sin36=10254\sin {{36}^{\circ }}=\dfrac{\sqrt{10-2\sqrt{5}}}{4} and sin72=10+254\sin {{72}^{\circ }}=\dfrac{\sqrt{10+2\sqrt{5}}}{4}.
Substituting the above values, we have sin36sin72sin108sin144=sin236sin272=(10254)2(10+254)2\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\sin }^{2}}{{36}^{\circ }}{{\sin }^{2}}{{72}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}.
Simplifying the above equation, we have sin36sin72sin108sin144=(10254)2(10+254)2=102516×10+2516\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}={{\left( \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right)}^{2}}{{\left( \dfrac{\sqrt{10+2\sqrt{5}}}{4} \right)}^{2}}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}.
We know the identity (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.
Substituting a=10,b=25a=10,b=2\sqrt{5} in the above equation, we have (10+25)(1025)=(10)2(25)2=10020=80\left( 10+2\sqrt{5} \right)\left( 10-2\sqrt{5} \right)={{\left( 10 \right)}^{2}}-{{\left( 2\sqrt{5} \right)}^{2}}=100-20=80.
Thus, we have sin36sin72sin108sin144=102516×10+2516=80256=516\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }}=\dfrac{10-2\sqrt{5}}{16}\times \dfrac{10+2\sqrt{5}}{16}=\dfrac{80}{256}=\dfrac{5}{16}.
Hence, the value of the trigonometric expression sin36sin72sin108sin144\sin {{36}^{\circ }}\sin {{72}^{\circ }}\sin {{108}^{\circ }}\sin {{144}^{\circ }} is 516\dfrac{5}{16}, which is option (d).
Trigonometric functions are real functions that relate any angle of a right-angled triangle to the ratios of any two of its sides. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius 1).

Note: To calculate the value of the given trigonometric expression, one must know the value of sin36\sin {{36}^{\circ }} and sin72\sin {{72}^{\circ }}. If not, we can calculate the value of sin36\sin {{36}^{\circ }} by calculating the value of sin18\sin {{18}^{\circ }} using the fact that if x=18x={{18}^{\circ }}, we have 5x=905x={{90}^{\circ }}. We can then use the trigonometric identity sin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y to calculate the value of sin36\sin {{36}^{\circ }}. To calculate the value of sin72\sin {{72}^{\circ }}, we have to calculate the value of cos18\cos {{18}^{\circ }} and then use the identity sinx=cos(90x)\sin x=\cos \left( {{90}^{\circ }}-x \right). One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.