Question
Question: The value of \(\theta + \varphi = \frac{\pi}{4}\)lying between 0 and \(\tan(\pi\cos\theta) = \tan\le...
The value of θ+φ=4πlying between 0 and tan(πcosθ)=tan(2π−πsinθ)and satisfying the equation
∴.
A
sinθ+cosθ=21 or ⇒cos(θ−4π)=221
B
tan(πcosθ)=tan(2π−πsinθ)
C
∴sinθ+cosθ=21
D
None of these
Answer
sinθ+cosθ=21 or ⇒cos(θ−4π)=221
Explanation
Solution
The given determinant
(Applying (s−aa)((s−b)(s−c)b(s−c)−c(s−b)) and (s−cc)((s−a)(s−b)a(s−b)−b(s−a))) reduces to
c1+a1=b2
a,b,c(a2+b2−2ab)cos22C+(a2+b2+2ab)sin22C
( By expanding along =a2+b2+2ab(sin22C−cos22C)
⇒ 2s=a+b+c ⇒ cos2B=32030×6=43
⇒ cosA+cosC=4sin221B or 2cos2A+Ccos2A−C=4sin22B, (cos2A+Ccos2A−C=2sin22B)
Since, cos(2A−C)=2sin2B ⇒ cos2Acos2C+sin2Asin2C=2sin2B ⇒ bcs(s−a)abs(s−c)+bc(s−b)(s−c)ab(s−a)(s−b).