Solveeit Logo

Question

Question: The value of \(\theta + \varphi = \frac{\pi}{4}\)lying between 0 and \(\tan(\pi\cos\theta) = \tan\le...

The value of θ+φ=π4\theta + \varphi = \frac{\pi}{4}lying between 0 and tan(πcosθ)=tan(π2πsinθ)\tan(\pi\cos\theta) = \tan\left( \frac{\pi}{2} - \pi\sin\theta \right)and satisfying the equation

\therefore.

A

sinθ+cosθ=12\sin\theta + \cos\theta = \frac{1}{2} or cos(θπ4)=122\Rightarrow \cos\left( \theta - \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}

B

tan(πcosθ)=tan(π2πsinθ)\tan(\pi\cos\theta) = \tan\left( \frac{\pi}{2} - \pi\sin\theta \right)

C

sinθ+cosθ=12\therefore\sin\theta + \cos\theta = \frac{1}{2}

D

None of these

Answer

sinθ+cosθ=12\sin\theta + \cos\theta = \frac{1}{2} or cos(θπ4)=122\Rightarrow \cos\left( \theta - \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}

Explanation

Solution

The given determinant

(Applying (asa)(b(sc)c(sb)(sb)(sc))\left( \frac{a}{s - a} \right)\left( \frac{b(s - c) - c(s - b)}{(s - b)(s - c)} \right) and (csc)(a(sb)b(sa)(sa)(sb))\left( \frac{c}{s - c} \right)\left( \frac{a(s - b) - b(s - a)}{(s - a)(s - b)} \right)) reduces to

1c+1a=2b\frac{1}{c} + \frac{1}{a} = \frac{2}{b}

a,b,c(a2+b22ab)cos2C2+(a2+b2+2ab)sin2C2a,b,c(a^{2} + b^{2} - 2ab)\cos^{2}\frac{C}{2} + (a^{2} + b^{2} + 2ab)\sin^{2}\frac{C}{2}

( By expanding along =a2+b2+2ab(sin2C2cos2C2)= a^{2} + b^{2} + 2ab\left( \sin^{2}\frac{C}{2} - \cos^{2}\frac{C}{2} \right)

2s=a+b+c2s = a + b + ccosB2=30×6320=34\cos\frac{B}{2} = \sqrt{\frac{30 \times 6}{320}} = \frac{3}{4}

cosA+cosC=4sin212B\cos A + \cos C = 4\sin^{2}\frac{1}{2}B or 2cosA+C2cosAC2=4sin2B22\cos\frac{A + C}{2}\cos\frac{A - C}{2} = 4\sin^{2}\frac{B}{2}, (cosA+C2cosAC2=2sin2B2\cos\frac{A + C}{2}\cos\frac{A - C}{2} = 2\sin^{2}\frac{B}{2})

Since, cos(AC2)=2sinB2\cos\left( \frac{A - C}{2} \right) = 2\sin\frac{B}{2}cosA2cosC2+sinA2sinC2=2sinB2\cos\frac{A}{2}\cos\frac{C}{2} + \sin\frac{A}{2}\sin\frac{C}{2} = 2\sin\frac{B}{2}s(sa)bcs(sc)ab+(sb)(sc)bc(sa)(sb)ab\sqrt{\frac{s(s - a)}{bc}}\sqrt{\frac{s(s - c)}{ab}} + \sqrt{\frac{(s - b)(s - c)}{bc}}\sqrt{\frac{(s - a)(s - b)}{ab}}.