Question
Mathematics Question on binomial expansion formula
The value of the term independent of x in the expansion of (1+2x−x2)4,x=0 is equal to
A
1
B
-6
C
-5
D
6
Answer
-5
Explanation
Solution
(1+2x−x2)4 =4C0+4C1(2x−x2)+4C2(2x−x2)2 4C3(2x−x2)3+4C4(2x−x2)4=4C0+4C1(2x−x2)+4C2[4x2−2+x24] +4C3[3C0(2x)3−3C1(2x)2(x2)+3C2(2x)(x2)2−3C3(x2)3] +4C0[4C0(2x)4−4C1(2x)3(x2)+4C2(2x)2(x2)2−4C3(2x)(x2)3+4C4(x2)4] The term independent of x in above =4C0+4C2(−2)+4C4.4C2=1−12+6=−5