Solveeit Logo

Question

Question: The value of the sum \(\sum_{n = 1}^{13}\left( i^{n} + i^{n + 1} \right)\), where i = \(\sqrt{- 1}\)...

The value of the sum n=113(in+in+1)\sum_{n = 1}^{13}\left( i^{n} + i^{n + 1} \right), where i = 1\sqrt{- 1} is

A

I

B

i – 1

C

–I

D

0

Answer

i – 1

Explanation

Solution

Sol.

n=113in\sum_{n = 1}^{13}i^{n}+ n=113in+1\sum_{n = 1}^{13}i^{n + 1}

= (i + i2 + ..... i13) + (i2 + i3 + ....... i14)

= (i + 0) + (i2 + 0)

= i – 1