Solveeit Logo

Question

Question: The value of the sum \[\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}\] where \[i=\sqr...

The value of the sum n=113(in+in+1)\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)} where i=1i=\sqrt{-1} equals

  1. ii
  2. i1i-1
  3. i-i
  4. 00
Explanation

Solution

In this question we have to use the value of ii which is defined to be equal to 1\sqrt{-1}. By using the basic rules of indices we can find the values of different powers of ii. Here, first we simplify the summation for the given values of nn and then by substituting the values of different powers of ii and by simplifying the expression further we can obtain the required result.

Complete step-by-step solution:
Now we have to find the value of the sum n=113(in+in+1)\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)} where i=1i=\sqrt{-1}
For this let us consider the expression and simplify it by substituting the values of nn

& \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)} \\\ & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+\cdots \cdots +{{i}^{13}} \right)+\left( {{i}^{2}}+{{i}^{3}}+{{i}^{4}}+{{i}^{5}}+\cdots \cdots +{{i}^{14}} \right) \\\ \end{aligned}$$ As we have given that $$i=\sqrt{-1}$$ $$\begin{aligned} & \Rightarrow {{i}^{2}}=-1 \\\ & \Rightarrow {{i}^{3}}={{i}^{2}}\cdot i=-i \\\ & \Rightarrow {{i}^{4}}={{i}^{2}}\cdot {{i}^{2}}=1 \\\ & \Rightarrow {{i}^{5}}={{i}^{4}}\cdot i=i \\\ \end{aligned}$$ So that we can observe that $$\Rightarrow i=\sqrt{-1},{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1,{{i}^{5}}=i$$ Continuing in this way we can write, $$\Rightarrow {{i}^{13}}={{i}^{4}}\cdot {{i}^{4}}\cdot {{i}^{4}}\cdot i=i$$ $$\Rightarrow {{i}^{14}}={{i}^{4}}\cdot {{i}^{4}}\cdot {{i}^{4}}\cdot {{i}^{2}}=-1$$ That is the values gets repeated from $${{i}^{5}}$$ onwards and hence the above expression becomes $$\Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( i+\left( -1 \right)+\left( -i \right)+\left( 1 \right)+\cdots \cdots +\left( i \right) \right)+\left( \left( -1 \right)+\left( -i \right)+1+i+\cdots \cdots +\left( -1 \right) \right)$$ By cancelling the terms having opposite signs we will get $$\Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=i-1$$ Hence, the value of the sum $$\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}$$ where $$i=\sqrt{-1}$$ equals to $$\left( i-1 \right)$$ **Thus, option (2) is the correct option.** **Note:** In this type of question students have to remember to find out the values of different powers of $$i$$. Also students must be familiar with the simplification of summation. One of the students may solve the question as follows: Let us consider the expression $$\Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}$$ Now we can rewrite $${{i}^{n+1}}$$ as $${{i}^{n+1}}={{i}^{n}}\cdot i$$ $$\begin{aligned} & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n}}\cdot i \right)} \\\ & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\sum\limits_{n=1}^{13}{{{i}^{n}}\left( 1+i \right)} \\\ \end{aligned}$$ $$\Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( 1+i \right)\sum\limits_{n=1}^{13}{{{i}^{n}}}$$ Now by substituting the values of $$n$$, we can simplify the summation as $$\Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( 1+i \right)\left( i+{{i}^{2}}+{{i}^{3}}+{{i}^{4}}+\cdots \cdots +{{i}^{13}} \right)$$ As we have given that $$i=\sqrt{-1}$$ $$\begin{aligned} & \Rightarrow {{i}^{2}}=-1 \\\ & \Rightarrow {{i}^{3}}={{i}^{2}}\cdot i=-i \\\ & \Rightarrow {{i}^{4}}={{i}^{2}}\cdot {{i}^{2}}=1 \\\ & \Rightarrow {{i}^{5}}={{i}^{4}}\cdot i=i \\\ \end{aligned}$$ So that we can observe that $$\Rightarrow i=\sqrt{-1},{{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1,{{i}^{5}}=i$$ Continuing in this way we can write, $$\Rightarrow {{i}^{13}}={{i}^{4}}\cdot {{i}^{4}}\cdot {{i}^{4}}\cdot i=i$$ Hence the above expression becomes, $$\begin{aligned} & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( 1+i \right)\left( i+\left( -1 \right)+\left( -i \right)+\left( 1 \right)+\cdots \cdots +\left( i \right) \right) \\\ & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( 1+i \right)\left( i \right) \\\ & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( i+{{i}^{2}} \right) \\\ & \Rightarrow \sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}=\left( i-1 \right) \\\ \end{aligned}$$ Hence, the value of the sum $$\sum\limits_{n=1}^{13}{\left( {{i}^{n}}+{{i}^{n+1}} \right)}$$ where $$i=\sqrt{-1}$$ equals to $$\left( i-1 \right)$$ Thus, option (2) is the correct option.