Solveeit Logo

Question

Question: The value of the sum \( \sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} \) ,where \(...

The value of the sum n=113(in+in+1)\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} ,where ii is the complex 1\sqrt { - 1} , is –
(A) ii
(B) i- i
(C) i+1i + 1
(D) i1i - 1

Explanation

Solution

Hint : We use all the value of iota (i)\left( i \right) to solve such a type of question. The value of iota is (i)=1\left( i \right) = \sqrt { - 1} , For reference also you should also remember i2=1;i3=i&i4=1{i^2} = - 1;{i^3} = - i\& {i^4} = 1 . Expand the summation sign and then use these values to simplify the equation.

Complete step-by-step answer :
In this question equation is given as
n=113(in+in+1)\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} , i=1i = \sqrt { - 1}
We have to find the value of given equation
So,
n=113(in+in+1)\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} . . . . . ( n=113\sum\limits_{n = 1}^{13} {} means sum from n=1n = 1 to n=13n = 13 )
Since, summation is distributive over addition, on expanding the given equation, we get,
n=113(in+in+1)=[(n=113in)+n=113in+1]\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right) = \left[ {\left( {\sum\limits_{n = 1}^{13} {{i^n}} } \right) + \sum\limits_{n = 1}^{13} {{i^{n + 1}}} } \right]}
On applying the summation ()\left( {\sum {} } \right) rule on the above equation we get expression as,
=[i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13]+[i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13+i14]= \left[ {i + {i^2} + {i^3} + {i^4} + {i^5} + {i^6} + {i^7} + {i^8} + {i^9} + {i^{10}} + {i^{11}} + {i^{12}} + {i^{13}}} \right] + \left[ {{i^2} + {i^3} + {i^4} + {i^5} + {i^6} + {i^7} + {i^8} + {i^9} + {i^{10}} + {i^{11}} + {i^{12}} + {i^{13}} + {i^{14}}} \right]
Let us call the above expression as S.
Now we know that i=1i = \sqrt { - 1} .
According to the complex number property, “four consecutive terms of i'i' is zero”.
Proof of
i+i2+i3+i4=0i + {i^2} + {i^3} + {i^4} = 0
We know i=1i = \sqrt { - 1}
Then
i2=1{i^2} = - 1
By multiplying it by ii we can write
i3=i2.i=i{i^3} = {i^2}.i = - i
Then again, multiplying it by ii , we can write
i4=(i2)2=(1)2=1\Rightarrow {i^4} = {\left( {{i^2}} \right)^2} = {\left( { - 1} \right)^2} = 1
On adding the above four terms of i'i' we get
i+i2+i3+i4=i1i+1=0i + {i^2} + {i^3} + {i^4} = i - 1 - i + 1 = 0
We can keep on doing the same thing to simplify all the powers of ii in terms of ±1,±i\pm 1, \pm i
Using the above expression, we can simplify S as
[i+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13]+[i2+i3+i4+i5+i6+i7+i8+i9+i10+i11+i12+i13+i14]\Rightarrow \left[ {i + {i^2} + {i^3} + {i^4} + {i^5} + {i^6} + {i^7} + {i^8} + {i^9} + {i^{10}} + {i^{11}} + {i^{12}} + {i^{13}}} \right] + \left[ {{i^2} + {i^3} + {i^4} + {i^5} + {i^6} + {i^7} + {i^8} + {i^9} + {i^{10}} + {i^{11}} + {i^{12}} + {i^{13}} + {i^{14}}} \right]
=[i1i+1+i1i+1+i1i+1+i]+[1i+1+i1i+1+i1i+1+i1]= \left[ {i - 1 - i + 1 + i - 1 - i + 1 + i - 1 - i + 1 + i} \right] + \left[ { - 1 - i + 1 + i - 1 - i + 1 + i - 1 - i + 1 + i - 1} \right]
By cancelling out the terms of opposite signs and simplifying the above equation, we get
S=i1S = i - 1
Therefore, we get
n=113(in+in+1)=i1\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} = i - 1

Note : This question looks difficult but it is not. You just need to understand the values of different powers of ii . Be careful while doing simplification. Do not make any mistake while simplifying the powers of ii or cancelling out the terms.