Question
Mathematics Question on Binomial theorem
The value of the sum (nC1)2+(nC2)2+(nC3)2+...+(nCn)2 is
A
(2nCn)2
B
2nCn
C
2nCn+1
D
2nCn−1
Answer
2nCn−1
Explanation
Solution
We know that (1+x)n=nC0+nC1x+nC2x2+⋯+nCnxn…… (i) and (x+1)n=nC0xn+nC1xn−1+nC2xn−2+⋯+nCn On multiplying equations (i) and (ii), we get (1+x)2n=(nC0+nC1x+nC2x2+⋯+nCnxn)× (nC0xn+nC1xn−1+nC2xn−2+⋯+nCn) Coefficient of xn in right hand side =(nC0)2+(nC1)2+⋯+(nCn)2 and coefficient of xn in left hand side =2nCn ∴(nC0)2+(nC1)2+⋯+(nCn)2=n!n!2n! ⇒(nC1)2+⋯+(nCn)2=n!n!(2n)!−1=2nCn−1