Solveeit Logo

Question

Question: the value of the sum \[1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + ......\] upto \[n...

the value of the sum 123+234+345+......1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + ...... upto nn terms is
(A) 16n2(2n2+1)\dfrac{1}{6}{n^2}(2{n^2} + 1)
(B) 16(n21)(2n1)(2n+3)\dfrac{1}{6}({n^2} - 1)(2n - 1)(2n + 3)
(C) 18(n2+1)(n2+5)\dfrac{1}{8}({n^2} + 1)({n^2} + 5)
(D) 14n(n+1)(n+2)(n+3)\dfrac{1}{4}n(n + 1)(n + 2)(n + 3)

Explanation

Solution

here, we use the standard formulas for summation of n,n2n,{n^2}and n3{n^3} terms.

Complete step-by-step answer:
Given, the sum is 123+234+345+......1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + ......
The nth{n^{th}}term of the sum is given by n(n+1)(n+2)n(n + 1)(n + 2)
Then the sum is given by r=1nr(r+1)(r+2)\sum\limits_{r = 1}^n {r(r + 1)(r + 2)}
r=1n(r2+r)(r+2)\Rightarrow \sum\limits_{r = 1}^n {({r^2} + r)(r + 2)}
r=1n(r3+3r2+2r)\Rightarrow \sum\limits_{r = 1}^n {({r^3} + 3{r^2} + 2r)}
r=1nr3+3r=1nr2+2r=1nr\Rightarrow \sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 2\sum\limits_{r = 1}^n r
Now, the sum can be found using the standard formulas for summation of n,n2n,{n^2}and n3{n^3} terms which are given by
r=1nr=12n(n+1)\sum\limits_{r = 1}^n r = \dfrac{1}{2}n(n + 1)
r=1nr2=16n(n+1)(2n+1)\sum\limits_{r = 1}^n {{r^2}} = \dfrac{1}{6}n(n + 1)(2n + 1)
r=1nr3=14n2(n+1)2\sum\limits_{r = 1}^n {{r^3}} = \dfrac{1}{4}{n^2}{(n + 1)^2}
\Rightarrowthe sum r=1nr3+3r=1nr2+2r=1nr\sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 2\sum\limits_{r = 1}^n r is given by
14n2(n+1)2+316n(n+1)(2n+1)+212n(n+1)\dfrac{1}{4}{n^2}{(n + 1)^2} + 3 \cdot \dfrac{1}{6}n(n + 1)(2n + 1) + 2 \cdot \dfrac{1}{2}n(n + 1)
14n2(n+1)2+12n(n+1)(2n+1)+n(n+1)\Rightarrow \dfrac{1}{4}{n^2}{(n + 1)^2} + \dfrac{1}{2}n(n + 1)(2n + 1) + n(n + 1)
14n(n+1)[n(n+1)+2n(2n+1)+4]\Rightarrow \dfrac{1}{4}n(n + 1)\left[ {n(n + 1) + 2n(2n + 1) + 4} \right]
14n(n+1)[n2+n+4n+2+4]\Rightarrow \dfrac{1}{4}n(n + 1)\left[ {{n^2} + n + 4n + 2 + 4} \right]
14n(n+1)(n2+5n+6)\Rightarrow \dfrac{1}{4}n(n + 1)\left( {{n^2} + 5n + 6} \right)
14n(n+1)(n2+3n+2n+6)\Rightarrow \dfrac{1}{4}n(n + 1)({n^2} + 3n + 2n + 6)
14n(n+1)[n(n+3)+2(n+3)]\Rightarrow \dfrac{1}{4}n(n + 1)\left[ {n(n + 3) + 2(n + 3)} \right]
14n(n+1)(n+2)(n+3)\Rightarrow \dfrac{1}{4}n(n + 1)(n + 2)(n + 3)
Therefore, (D) 14n(n+1)(n+2)(n+3)\dfrac{1}{4}n(n + 1)(n + 2)(n + 3) is the required solution.

Note: in these types of questions always try to find the nth{n^{th}} term.