Solveeit Logo

Question

Question: The value of the limit of \(\frac{x^{3} - 8}{(x^{2} - 4)}\) as x tends to 2 is...

The value of the limit of x38(x24)\frac{x^{3} - 8}{(x^{2} - 4)} as x tends to 2 is

A

3

B

32\frac{3}{2}

C

1

D

0

Answer

3

Explanation

Solution

limx2x38x24=limx2(x2+2x+4)(x2)(x+2)(x2)=limx2x2+2x+4x+2=4+4+42+2=3\lim_{x \rightarrow 2}\frac{x^{3} - 8}{x^{2} - 4} = \lim_{x \rightarrow 2}\frac{(x^{2} + 2x + 4)(x - 2)}{(x + 2)(x - 2)} = \lim_{x \rightarrow 2}\frac{x^{2} + 2x + 4}{x + 2} = \frac{4 + 4 + 4}{2 + 2} = 3.