Solveeit Logo

Question

Question: The value of the $\lim_{n\to\infty} n\int_{0}^{\pi/4} \tan^n x \,dx$ is...

The value of the limnn0π/4tannxdx\lim_{n\to\infty} n\int_{0}^{\pi/4} \tan^n x \,dx is

Answer

1/2

Explanation

Solution

To evaluate the limit limnn0π/4tannxdx\lim_{n\to\infty} n\int_{0}^{\pi/4} \tan^n x \,dx, let In=0π/4tannxdxI_n = \int_{0}^{\pi/4} \tan^n x \,dx.

Step 1: Derive a recurrence relation for InI_n.

We can relate InI_n and In+2I_{n+2} using integration by parts or by manipulating the integrand.
Consider In+2I_{n+2}:

In+2=0π/4tann+2xdx=0π/4tannxtan2xdxI_{n+2} = \int_{0}^{\pi/4} \tan^{n+2} x \,dx = \int_{0}^{\pi/4} \tan^n x \cdot \tan^2 x \,dx

We know that tan2x=sec2x1\tan^2 x = \sec^2 x - 1. Substitute this into the integral:

In+2=0π/4tannx(sec2x1)dxI_{n+2} = \int_{0}^{\pi/4} \tan^n x (\sec^2 x - 1) \,dx In+2=0π/4tannxsec2xdx0π/4tannxdxI_{n+2} = \int_{0}^{\pi/4} \tan^n x \sec^2 x \,dx - \int_{0}^{\pi/4} \tan^n x \,dx

The second term on the right is InI_n.
For the first term, let u=tanxu = \tan x. Then du=sec2xdxdu = \sec^2 x \,dx.
When x=0x=0, u=tan0=0u=\tan 0 = 0. When x=π/4x=\pi/4, u=tan(π/4)=1u=\tan(\pi/4) = 1.
So, the first integral becomes:

01undu=[un+1n+1]01=1n+1n+10n+1n+1=1n+1\int_{0}^{1} u^n \,du = \left[ \frac{u^{n+1}}{n+1} \right]_{0}^{1} = \frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} = \frac{1}{n+1}

Therefore, the recurrence relation is:

In+2=1n+1InI_{n+2} = \frac{1}{n+1} - I_n

Rearranging this, we get:

In+In+2=1n+1I_n + I_{n+2} = \frac{1}{n+1}

Step 2: Show that limnIn=0\lim_{n\to\infty} I_n = 0.

For x[0,π/4)x \in [0, \pi/4), we have 0tanx<10 \le \tan x < 1. At x=π/4x=\pi/4, tanx=1\tan x = 1.
Let δ\delta be a small positive number. We can split the integral:

In=0π/4δtannxdx+π/4δπ/4tannxdxI_n = \int_{0}^{\pi/4 - \delta} \tan^n x \,dx + \int_{\pi/4 - \delta}^{\pi/4} \tan^n x \,dx

For the first integral, since 0xπ/4δ0 \le x \le \pi/4 - \delta, we have 0tanxtan(π/4δ)0 \le \tan x \le \tan(\pi/4 - \delta). Let k=tan(π/4δ)k = \tan(\pi/4 - \delta). Since π/4δ<π/4\pi/4 - \delta < \pi/4, we have k<1k < 1.
So, 0π/4δtannxdx0π/4δkndx=(π/4δ)kn\int_{0}^{\pi/4 - \delta} \tan^n x \,dx \le \int_{0}^{\pi/4 - \delta} k^n \,dx = (\pi/4 - \delta) k^n.
As nn \to \infty, since k<1k < 1, kn0k^n \to 0. Thus, limn0π/4δtannxdx=0\lim_{n\to\infty} \int_{0}^{\pi/4 - \delta} \tan^n x \,dx = 0.
For the second integral, since π/4δxπ/4\pi/4 - \delta \le x \le \pi/4, we have 0tanx10 \le \tan x \le 1.
So, 0π/4δπ/4tannxdxπ/4δπ/41ndx=π/4δπ/41dx=π/4(π/4δ)=δ0 \le \int_{\pi/4 - \delta}^{\pi/4} \tan^n x \,dx \le \int_{\pi/4 - \delta}^{\pi/4} 1^n \,dx = \int_{\pi/4 - \delta}^{\pi/4} 1 \,dx = \pi/4 - (\pi/4 - \delta) = \delta.
Since δ\delta can be chosen arbitrarily small, this implies that limnπ/4δπ/4tannxdx=0\lim_{n\to\infty} \int_{\pi/4 - \delta}^{\pi/4} \tan^n x \,dx = 0.
Therefore, limnIn=0\lim_{n\to\infty} I_n = 0.

Step 3: Evaluate the limit.

We have the recurrence relation In+In+2=1n+1I_n + I_{n+2} = \frac{1}{n+1}.
Multiply the entire equation by nn:

nIn+nIn+2=nn+1nI_n + nI_{n+2} = \frac{n}{n+1}

Now, take the limit as nn \to \infty:

limn(nIn+nIn+2)=limnnn+1\lim_{n\to\infty} (nI_n + nI_{n+2}) = \lim_{n\to\infty} \frac{n}{n+1}

Let L=limnnInL = \lim_{n\to\infty} nI_n.
The right-hand side limit is:

limnnn+1=limn11+1/n=11+0=1\lim_{n\to\infty} \frac{n}{n+1} = \lim_{n\to\infty} \frac{1}{1 + 1/n} = \frac{1}{1+0} = 1

For the left-hand side, we have limnnIn=L\lim_{n\to\infty} nI_n = L.
For the second term, limnnIn+2\lim_{n\to\infty} nI_{n+2}:

nIn+2=nn+2(n+2)In+2nI_{n+2} = \frac{n}{n+2} \cdot (n+2)I_{n+2}

As nn \to \infty, limnnn+2=limn11+2/n=1\lim_{n\to\infty} \frac{n}{n+2} = \lim_{n\to\infty} \frac{1}{1 + 2/n} = 1.
Also, limn(n+2)In+2=L\lim_{n\to\infty} (n+2)I_{n+2} = L (since n+2n+2 is just a shifted index, the limit value remains the same).
So, limnnIn+2=1L=L\lim_{n\to\infty} nI_{n+2} = 1 \cdot L = L.
Substituting these limits back into the equation:

L+L=1L + L = 1 2L=12L = 1 L=12L = \frac{1}{2}

The value of the limit is 1/21/2.