Question
Question: The value of the integral \(\sum_{k = 1}^{n}{\int_{0}^{1}{f(k - 1 + x)dx}}\) is...
The value of the integral ∑k=1n∫01f(k−1+x)dx is
A
∫01f(x)dx
B
∫02f(x)dx
C
∫0nf(x)dx
D
n∫01f(x)dx
Answer
∫0nf(x)dx
Explanation
Solution
Let I=∫01f(k−1+x)dx
⇒ I=∫k−1kf(t)dt, where t=k−1+x ⇒ I=∫k−1kf(x)dx
∴∑k=1n∫k−1kf(x)dx=∫01f(x)dx+∫12f(x)dx+.....+∫n−1nf(x)dx
=∫0nf(x)dx.