Solveeit Logo

Question

Question: The value of the integral \(\sum_{k = 1}^{n}{\int_{0}^{1}{f(k - 1 + x)dx}}\) is...

The value of the integral k=1n01f(k1+x)dx\sum_{k = 1}^{n}{\int_{0}^{1}{f(k - 1 + x)dx}} is

A

01f(x)dx\int_{0}^{1}{f(x)dx}

B

02f(x)dx\int_{0}^{2}{f(x)dx}

C

0nf(x)dx\int_{0}^{n}{f(x)dx}

D

n01f(x)dxn\int_{0}^{1}{f(x)dx}

Answer

0nf(x)dx\int_{0}^{n}{f(x)dx}

Explanation

Solution

Let I=01f(k1+x)dxI = \int_{0}^{1}{f(k - 1 + x)dx}

I=k1kf(t)dt,I = \int_{k - 1}^{k}{f(t)dt,} where t=k1+xt = k - 1 + xI=k1kf(x)dxI = \int_{k - 1}^{k}{f(x)dx}

k=1nk1kf(x)dx=01f(x)dx+12f(x)dx+.....+n1nf(x)dx\therefore\sum_{k = 1}^{n}{\int_{k - 1}^{k}{f(x)dx = \int_{0}^{1}{f(x)dx + \int_{1}^{2}{f(x)dx + ..... + \int_{n - 1}^{n}{f(x)dx}}}}}

=0nf(x)dx= \int_{0}^{n}{f(x)dx}.