Solveeit Logo

Question

Question: The value of the integral \(\int _ { - \pi / 4 } ^ { \pi / 4 } \sin ^ { - 4 } x d x\) is...

The value of the integral π/4π/4sin4xdx\int _ { - \pi / 4 } ^ { \pi / 4 } \sin ^ { - 4 } x d x is

A

3/2

B

–8/3

C

3/8

D

8/3

Answer

–8/3

Explanation

Solution

π/4π/4sin4xdx=20π/4cos4xsin4xsec4xdx=20π/4sec4xdxtan4x\int _ { - \pi / 4 } ^ { \pi / 4 } \sin ^ { - 4 } x d x = 2 \int _ { 0 } ^ { \pi / 4 } \frac { \cos ^ { 4 } x } { \sin ^ { 4 } x } \sec ^ { 4 } x d x = 2 \int _ { 0 } ^ { \pi / 4 } \frac { \sec ^ { 4 } x d x } { \tan ^ { 4 } x }

Put tanx=t\tan x = t , we get 2011+t2t4dt2 \int _ { 0 } ^ { 1 } \frac { 1 + t ^ { 2 } } { t ^ { 4 } } d t

=2[13t301+1t01]=83= 2 \left[ \left| - \frac { 1 } { 3 t ^ { 3 } } \right| _ { 0 } ^ { 1 } + \left| - \frac { 1 } { t } \right| _ { 0 } ^ { 1 } \right] = - \frac { 8 } { 3 }.