Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of the integral is equal to π6π3(sinxxcosx)x(x+sinx)dx\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}} \frac{\left(sin\,x - xcos\, x\right)}{x\left(x+sin\,x\right)}dx is

A

loge(2(π+3)2π+33)log_{e}\left(\frac{2\left(\pi+3\right)}{2\pi+3\sqrt{3}}\right)

B

loge(π+32(2π+33))log_{e}\left(\frac{\pi+3}{2\left(2\pi+3\sqrt{3}\right)}\right)

C

loge(2π+332(π+3))log_{e}\left(\frac{2\pi +3\sqrt{3}}{2\left(\pi +3\right)}\right)

D

loge(2(2π+33)π+3)log_{e}\left(\frac{2\left(2\pi +3\sqrt{3}\right)}{\pi +3}\right)

Answer

loge(2(π+3)2π+33)log_{e}\left(\frac{2\left(\pi+3\right)}{2\pi+3\sqrt{3}}\right)

Explanation

Solution

Let l =\int_\limits{\pi / 6}^{\pi / 3} \frac{(\sin x-x \cos x)}{x(x+\sin x)} d x
\Rightarrow l=\int_\limits{\pi / 6}^{\pi / 3} \frac{(x+\sin x)-x(1+\cos x)}{x(x+\sin x)} d x
\Rightarrow I=\int_\limits{\pi / 6}^{\pi / 3}\left(\frac{1}{x}-\frac{1+\cos x}{x+\sin x}\right) d x
\Rightarrow I=[\log x]_{\pi / 6}^{\pi / 3}-\int_\limits\limits{\pi / 6}^{\pi / 3} \frac{1+\cos x}{x+\sin x} \cdot d x
{ put t=x+sinx dt=(1+cosx)dx\begin{cases}\text { put } t=x+\sin x \\\ d t=(1+\cos x) d x\end{cases} in lind term
I=(logπ3logπ6)(π6+12)(π3+32)dtt\Rightarrow I=\left(\log \frac{\pi}{3}-\log \frac{\pi}{6}\right)-\int_ {\left(\frac{\pi}{6}+\frac{1}{2}\right)}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right) \frac{d t}{t}
I=log2[logt](π3+32)\Rightarrow I=\log 2-[\log t]\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)
J=log2[log(π3+12)\Rightarrow J=\log 2-\left[\log \left(\frac{\pi}{3}+\frac{1}{2}\right)\right.
I=log2log(2π+33π+3)\Rightarrow I=\log 2-\log \left(\frac{2 \pi+3 \sqrt{3}}{\pi+3}\right)
(logmlogn=logmn)\left(\because \log m-\log n=\log \frac{m}{n}\right)
=log(2(π+3)2π+33)\Rightarrow=\log \left(\frac{2(\pi+3)}{2 \pi+3 \sqrt{3}}\right)
=log(2π+62π+33)\Rightarrow=\log \left(\frac{2 \pi+6}{2 \pi+3 \sqrt{3}}\right)