Question
Mathematics Question on Integrals of Some Particular Functions
The value of the integral is equal to 6π∫3πx(x+sinx)(sinx−xcosx)dx is
loge(2π+332(π+3))
loge(2(2π+33)π+3)
loge(2(π+3)2π+33)
loge(π+32(2π+33))
loge(2π+332(π+3))
Solution
Let l =\int_\limits{\pi / 6}^{\pi / 3} \frac{(\sin x-x \cos x)}{x(x+\sin x)} d x
\Rightarrow l=\int_\limits{\pi / 6}^{\pi / 3} \frac{(x+\sin x)-x(1+\cos x)}{x(x+\sin x)} d x
\Rightarrow I=\int_\limits{\pi / 6}^{\pi / 3}\left(\frac{1}{x}-\frac{1+\cos x}{x+\sin x}\right) d x
\Rightarrow I=[\log x]_{\pi / 6}^{\pi / 3}-\int_\limits\limits{\pi / 6}^{\pi / 3} \frac{1+\cos x}{x+\sin x} \cdot d x
{ put t=x+sinx dt=(1+cosx)dx in lind term
⇒I=(log3π−log6π)−∫(6π+21)(3π+23)tdt
⇒I=log2−[logt](3π+23)
⇒J=log2−[log(3π+21)
⇒I=log2−log(π+32π+33)
(∵logm−logn=lognm)
⇒=log(2π+332(π+3))
⇒=log(2π+332π+6)