Solveeit Logo

Question

Question: The value of the integral \(\int_{\pi/6}^{\pi/3}\frac{dx}{1 + \tan^{5}x}\) is...

The value of the integral π/6π/3dx1+tan5x\int_{\pi/6}^{\pi/3}\frac{dx}{1 + \tan^{5}x} is

A

1

B

π/12

C

π/6

D

None of these

Answer

π/12

Explanation

Solution

Using the property ab\int_{a}^{b}{}f (x) d x = ab\int_{a}^{b}{}f (a + b – x) dx, the given integral

I = π/6π/3dx1+tan5x\int_{\pi/6}^{\pi/3}\frac{dx}{1 + \tan^{5}x} = π/6π/3dx1+tan5(π3+π6x)\int_{\pi/6}^{\pi/3}\frac{dx}{1 + \tan^{5}\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}= π/6π/3dx1+cot5x\int_{\pi/6}^{\pi/3}\frac{dx}{1 + \cot^{5}x}.

Hence 2 I = π/6π/3dx\int_{\pi/6}^{\pi/3}{dx}⇒ I = 12\frac { 1 } { 2 } (π3π6)\left( \frac{\pi}{3} - \frac{\pi}{6} \right) = π12\frac{\pi}{12}