Solveeit Logo

Question

Question: The value of the integral \(\int_{}^{}{\frac{x}{1 + x\tan x}dx}\) is equal to...

The value of the integral x1+xtanxdx\int_{}^{}{\frac{x}{1 + x\tan x}dx} is equal to

A

logxcosx+sinx+c\log|x\cos x + \sin x| + c

B

logcosx_+x\log|\cos x\_ + x|+ c

C

logcosx+xsinx+C\log|\cos x + x\sin x| + C

D

None of these

Answer

logcosx+xsinx+C\log|\cos x + x\sin x| + C

Explanation

Solution

I=x1+xtanxdx=xcosxcosx+xsinxdxI = \int_{}^{}{\frac{x}{1 + x\tan x}dx = \int_{}^{}{\frac{x\cos x}{\cos x + x\sin x}dx}}Put (cosx+xsinx)=t(\cos x + x\sin x) = t(sinx+xcosx+sinx)dx=dt( - \sin x + x\cos x + \sin x)dx = dtxcosxdx=dtx\cos xdx = dt

I=dtt=logt+c=logcosx+xsinx+cI = \int_{}^{}{\frac{dt}{t} = \log|t| + c = \log|\cos x + x\sin x| + c}