Solveeit Logo

Question

Question: The value of the integral \(\int_{e^{- 1}}^{e^{2}}\left| \frac{\log_{e}x}{x} \right|dx\) is...

The value of the integral e1e2logexxdx\int_{e^{- 1}}^{e^{2}}\left| \frac{\log_{e}x}{x} \right|dx is

A

3/2

B

5/2

C

3

D

5

Answer

5/2

Explanation

Solution

Put logex=tet=x\log_{e}x = t \Rightarrow e^{t} = x

dx=etdtdx = e^{t}dt

and limits are adjusted as –1 to 2

I=12tetetdt=12tdtI = \int_{- 1}^{2}{\left| \frac{t}{e^{t}} \right|e^{t}dt} = \int_{- 1}^{2}{|t|dt}I=10tdt+02tdtI = \int_{- 1}^{0}{- tdt + \int_{0}^{2}{tdt}}I=[t22]10+[t22]02I = \left\lbrack \frac{- t^{2}}{2} \right\rbrack_{- 1}^{0} + \left\lbrack \frac{t^{2}}{2} \right\rbrack_{0}^{2}I=5/2I = 5 ⥂ / ⥂ 2