Solveeit Logo

Question

Question: The value of the integral $\int_0^{\pi/2} \frac{dx}{(1 + \sin^2 x)}$ lies in smallest interval out o...

The value of the integral 0π/2dx(1+sin2x)\int_0^{\pi/2} \frac{dx}{(1 + \sin^2 x)} lies in smallest interval out of given options is:

A

(π2,π)\left(\frac{\pi}{2}, \pi\right)

B

(π4,π2)\left(\frac{\pi}{4}, \frac{\pi}{2}\right)

C

(π3,π2)\left(\frac{\pi}{3}, \frac{\pi}{2}\right)

D

(π8,π2)\left(\frac{\pi}{8}, \frac{\pi}{2}\right)

Answer

(C)

Explanation

Solution

To evaluate the integral I=0π/2dx(1+sin2x)I = \int_0^{\pi/2} \frac{dx}{(1 + \sin^2 x)}, we follow these steps:

  1. Transform the integrand: Divide the numerator and denominator by cos2x\cos^2 x: I=0π/21/cos2x(1+sin2x)/cos2xdxI = \int_0^{\pi/2} \frac{1/\cos^2 x}{(1 + \sin^2 x)/\cos^2 x} dx

    I=0π/2sec2xsec2x+tan2xdxI = \int_0^{\pi/2} \frac{\sec^2 x}{\sec^2 x + \tan^2 x} dx

    Substitute sec2x=1+tan2x\sec^2 x = 1 + \tan^2 x in the denominator:

    I=0π/2sec2x1+tan2x+tan2xdxI = \int_0^{\pi/2} \frac{\sec^2 x}{1 + \tan^2 x + \tan^2 x} dx

    I=0π/2sec2x1+2tan2xdxI = \int_0^{\pi/2} \frac{\sec^2 x}{1 + 2\tan^2 x} dx

  2. Substitute and change limits: Let t=tanxt = \tan x. Then dt=sec2xdxdt = \sec^2 x dx.

    When x=0x = 0, t=tan0=0t = \tan 0 = 0.

    When x=π/2x = \pi/2, t=tan(π/2)t = \tan(\pi/2) \to \infty.

    The integral becomes:

    I=0dt1+2t2I = \int_0^{\infty} \frac{dt}{1 + 2t^2}

  3. Evaluate the transformed integral:

    Factor out 2 from the denominator:

    I=120dt12+t2I = \frac{1}{2} \int_0^{\infty} \frac{dt}{\frac{1}{2} + t^2}

    Rewrite 12\frac{1}{2} as (12)2\left(\frac{1}{\sqrt{2}}\right)^2:

    I=120dt(12)2+t2I = \frac{1}{2} \int_0^{\infty} \frac{dt}{\left(\frac{1}{\sqrt{2}}\right)^2 + t^2}

    This is a standard integral of the form dxa2+x2=1aarctan(xa)\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right). Here a=12a = \frac{1}{\sqrt{2}}.

    I=12[11/2arctan(t1/2)]0I = \frac{1}{2} \left[ \frac{1}{1/\sqrt{2}} \arctan\left(\frac{t}{1/\sqrt{2}}\right) \right]_0^{\infty}

    I=12[2arctan(2t)]0I = \frac{1}{2} \left[ \sqrt{2} \arctan(\sqrt{2}t) \right]_0^{\infty}

    I=22[arctan(2t)]0I = \frac{\sqrt{2}}{2} \left[ \arctan(\sqrt{2}t) \right]_0^{\infty}

    I=12[arctan()arctan(0)]I = \frac{1}{\sqrt{2}} \left[ \arctan(\infty) - \arctan(0) \right]

    I=12[π20]I = \frac{1}{\sqrt{2}} \left[ \frac{\pi}{2} - 0 \right]

    I=π22I = \frac{\pi}{2\sqrt{2}}

  4. Simplify and compare with options:

    The value of the integral is I=π22=π24I = \frac{\pi}{2\sqrt{2}} = \frac{\pi\sqrt{2}}{4}.

    Now we need to find which of the given intervals contains this value and is the smallest.

    Let's compare II with the bounds of the given intervals:

    I=π243.14159×1.414244.442841.1107I = \frac{\pi\sqrt{2}}{4} \approx \frac{3.14159 \times 1.4142}{4} \approx \frac{4.4428}{4} \approx 1.1107.

    The options are:

    (A) (π2,π)(1.5708,3.1416)\left(\frac{\pi}{2}, \pi\right) \approx (1.5708, 3.1416)

    (B) (π4,π2)(0.7854,1.5708)\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \approx (0.7854, 1.5708)

    (C) (π3,π2)(1.0472,1.5708)\left(\frac{\pi}{3}, \frac{\pi}{2}\right) \approx (1.0472, 1.5708)

    (D) (π8,π2)(0.3927,1.5708)\left(\frac{\pi}{8}, \frac{\pi}{2}\right) \approx (0.3927, 1.5708)

    We need to check if II lies in these intervals more precisely.

    Is I<π2I < \frac{\pi}{2}?

    π22<π2    12<1    1<2\frac{\pi}{2\sqrt{2}} < \frac{\pi}{2} \implies \frac{1}{\sqrt{2}} < 1 \implies 1 < \sqrt{2}, which is true. So II is less than π/2\pi/2.

    Is I>π3I > \frac{\pi}{3}?

    π22>π3    122>13    3>22\frac{\pi}{2\sqrt{2}} > \frac{\pi}{3} \implies \frac{1}{2\sqrt{2}} > \frac{1}{3} \implies 3 > 2\sqrt{2}. Squaring both sides: 9>89 > 8, which is true. So I>π/3I > \pi/3.

    Therefore, I(π3,π2)I \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right). This means option (C) contains II.

    Since π/3>π/4>π/8\pi/3 > \pi/4 > \pi/8, if I(π/3,π/2)I \in (\pi/3, \pi/2), then II must also be in (π/4,π/2)(\pi/4, \pi/2) and (π/8,π/2)(\pi/8, \pi/2).

    So, options (B), (C), and (D) all contain the value of the integral.

    We need to find the smallest interval among the given options that contains II. The "smallest" interval refers to the one with the shortest length.

    Lengths of the intervals:

    Length of (B) = π2π4=π4\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}

    Length of (C) = π2π3=π6\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}

    Length of (D) = π2π8=3π8\frac{\pi}{2} - \frac{\pi}{8} = \frac{3\pi}{8}

    Comparing the lengths: π6<π4<3π8\frac{\pi}{6} < \frac{\pi}{4} < \frac{3\pi}{8} (since 4/24<6/24<9/244/24 < 6/24 < 9/24).

    The smallest length is π6\frac{\pi}{6}, which corresponds to interval (C).