Solveeit Logo

Question

Question: The value of the integral $\int_{0}^{\infty} \frac{\tan^{-1}x}{x^2+1+2x} dx$ is:...

The value of the integral 0tan1xx2+1+2xdx\int_{0}^{\infty} \frac{\tan^{-1}x}{x^2+1+2x} dx is:

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

π8\frac{\pi}{8}

D

π6\frac{\pi}{6}

Answer

π4\frac{\pi}{4}

Explanation

Solution

The given integral is I=0tan1xx2+1+2xdxI = \int_{0}^{\infty} \frac{\tan^{-1}x}{x^2+1+2x} dx.

First, simplify the denominator: x2+1+2x=(x+1)2x^2+1+2x = (x+1)^2.
So the integral becomes I=0tan1x(x+1)2dxI = \int_{0}^{\infty} \frac{\tan^{-1}x}{(x+1)^2} dx.

We will use integration by parts, udv=uvvdu\int u \, dv = uv - \int v \, du.
Let u=tan1xu = \tan^{-1}x and dv=1(x+1)2dxdv = \frac{1}{(x+1)^2} dx.

Then, we find dudu and vv:
du=11+x2dxdu = \frac{1}{1+x^2} dx
v=1(x+1)2dx=1x+1v = \int \frac{1}{(x+1)^2} dx = -\frac{1}{x+1}

Substitute these into the integration by parts formula:
I=[tan1xx+1]00(1x+1)(11+x2)dxI = \left[ -\frac{\tan^{-1}x}{x+1} \right]_{0}^{\infty} - \int_{0}^{\infty} \left( -\frac{1}{x+1} \right) \left( \frac{1}{1+x^2} \right) dx

Evaluate the first term:
[tan1xx+1]0=limx(tan1xx+1)(tan100+1)\left[ -\frac{\tan^{-1}x}{x+1} \right]_{0}^{\infty} = \lim_{x \to \infty} \left( -\frac{\tan^{-1}x}{x+1} \right) - \left( -\frac{\tan^{-1}0}{0+1} \right)
As xx \to \infty, tan1xπ2\tan^{-1}x \to \frac{\pi}{2}. So, limx(tan1xx+1)=π/2=0\lim_{x \to \infty} \left( -\frac{\tan^{-1}x}{x+1} \right) = -\frac{\pi/2}{\infty} = 0.
Also, tan10=0\tan^{-1}0 = 0. So, tan100+1=0-\frac{\tan^{-1}0}{0+1} = 0.
Thus, the first term evaluates to 00=00 - 0 = 0.

The integral simplifies to:
I=01(x+1)(x2+1)dxI = \int_{0}^{\infty} \frac{1}{(x+1)(x^2+1)} dx

Now, we use partial fraction decomposition for the integrand:
1(x+1)(x2+1)=Ax+1+Bx+Cx2+1\frac{1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}
Multiply by (x+1)(x2+1)(x+1)(x^2+1):
1=A(x2+1)+(Bx+C)(x+1)1 = A(x^2+1) + (Bx+C)(x+1)

To find AA, set x=1x=-1:
1=A((1)2+1)+0    1=2A    A=121 = A((-1)^2+1) + 0 \implies 1 = 2A \implies A = \frac{1}{2}.

Expand the equation and compare coefficients:
1=Ax2+A+Bx2+Bx+Cx+C1 = Ax^2+A + Bx^2+Bx+Cx+C
1=(A+B)x2+(B+C)x+(A+C)1 = (A+B)x^2 + (B+C)x + (A+C)

Comparing coefficients of x2x^2: 0=A+B    B=A=120 = A+B \implies B = -A = -\frac{1}{2}.
Comparing constant terms: 1=A+C    C=1A=112=121 = A+C \implies C = 1-A = 1-\frac{1}{2} = \frac{1}{2}.

So, the partial fraction decomposition is:
1(x+1)(x2+1)=1/2x+1+1/2x+1/2x2+1=12(x+1)x2(x2+1)+12(x2+1)\frac{1}{(x+1)(x^2+1)} = \frac{1/2}{x+1} + \frac{-1/2 x + 1/2}{x^2+1} = \frac{1}{2(x+1)} - \frac{x}{2(x^2+1)} + \frac{1}{2(x^2+1)}

Now, integrate this expression from 00 to \infty:
I=0(12(x+1)x2(x2+1)+12(x2+1))dxI = \int_{0}^{\infty} \left( \frac{1}{2(x+1)} - \frac{x}{2(x^2+1)} + \frac{1}{2(x^2+1)} \right) dx
I=[12lnx+114ln(x2+1)+12tan1x]0I = \left[ \frac{1}{2} \ln|x+1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \tan^{-1}x \right]_{0}^{\infty}

Combine the logarithmic terms: 12ln(x+1)14ln(x2+1)=14[2ln(x+1)ln(x2+1)]=14ln((x+1)2x2+1)\frac{1}{2} \ln(x+1) - \frac{1}{4} \ln(x^2+1) = \frac{1}{4} [2\ln(x+1) - \ln(x^2+1)] = \frac{1}{4} \ln\left(\frac{(x+1)^2}{x^2+1}\right)

So, the integral becomes:
I=[14ln((x+1)2x2+1)+12tan1x]0I = \left[ \frac{1}{4} \ln\left(\frac{(x+1)^2}{x^2+1}\right) + \frac{1}{2} \tan^{-1}x \right]_{0}^{\infty}

Evaluate at the upper limit (xx \to \infty):
limx(14ln((x+1)2x2+1)+12tan1x)\lim_{x \to \infty} \left( \frac{1}{4} \ln\left(\frac{(x+1)^2}{x^2+1}\right) + \frac{1}{2} \tan^{-1}x \right)
For the logarithmic term: limx(x+1)2x2+1=limxx2+2x+1x2+1=limx1+2/x+1/x21+1/x2=1\lim_{x \to \infty} \frac{(x+1)^2}{x^2+1} = \lim_{x \to \infty} \frac{x^2+2x+1}{x^2+1} = \lim_{x \to \infty} \frac{1+2/x+1/x^2}{1+1/x^2} = 1.
So, limx14ln(1)=0\lim_{x \to \infty} \frac{1}{4} \ln(1) = 0.
For the tan1x\tan^{-1}x term: limx12tan1x=12(π2)=π4\lim_{x \to \infty} \frac{1}{2} \tan^{-1}x = \frac{1}{2} \left( \frac{\pi}{2} \right) = \frac{\pi}{4}.
Value at upper limit = 0+π4=π40 + \frac{\pi}{4} = \frac{\pi}{4}.

Evaluate at the lower limit (x=0x=0):
14ln((0+1)202+1)+12tan10\frac{1}{4} \ln\left(\frac{(0+1)^2}{0^2+1}\right) + \frac{1}{2} \tan^{-1}0
=14ln(11)+12(0)= \frac{1}{4} \ln\left(\frac{1}{1}\right) + \frac{1}{2} (0)
=14ln(1)+0=0= \frac{1}{4} \ln(1) + 0 = 0.

Finally, subtract the lower limit value from the upper limit value:
I=π40=π4I = \frac{\pi}{4} - 0 = \frac{\pi}{4}.

The final answer is π4\frac{\pi}{4}.