Solveeit Logo

Question

Question: The value of the integral $\int_0^1 \sqrt{x + \sqrt{x + \sqrt{x + ...}}} dx$ is:...

The value of the integral 01x+x+x+...dx\int_0^1 \sqrt{x + \sqrt{x + \sqrt{x + ...}}} dx is:

A

112(3+1)\frac{1}{12}(\sqrt{3} + 1)

B

512(3+1)\frac{5}{12}(\sqrt{3} + 1)

C

512(5+1)\frac{5}{12}(\sqrt{5} + 1)

D

112(5+1)\frac{1}{12}(\sqrt{5} + 1)

Answer

512(5+1)\frac{5}{12}(\sqrt{5} + 1)

Explanation

Solution

To evaluate the integral 01x+x+x+...dx\int_0^1 \sqrt{x + \sqrt{x + \sqrt{x + ...}}} dx, we first need to simplify the expression inside the integral.

Let y=x+x+x+...y = \sqrt{x + \sqrt{x + \sqrt{x + ...}}}. This is an infinite nested radical. We can express it as:

y=x+yy = \sqrt{x + y}

Now, square both sides of the equation:

y2=x+yy^2 = x + y

Rearrange the terms to form a quadratic equation in yy:

y2yx=0y^2 - y - x = 0

Solve for yy using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a=1, b=1b=-1, and c=xc=-x:

y=(1)±(1)24(1)(x)2(1)y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-x)}}{2(1)}

y=1±1+4x2y = \frac{1 \pm \sqrt{1 + 4x}}{2}

Since yy represents a square root, it must be non-negative. The term 1+4x\sqrt{1+4x} is always positive for x0x \ge 0. If we take the minus sign, 11+4x1 - \sqrt{1+4x} would be negative (because 1+4x>1\sqrt{1+4x} > 1 for x>0x > 0). Therefore, we must choose the positive root:

y=1+1+4x2y = \frac{1 + \sqrt{1 + 4x}}{2}

Now, substitute this expression for yy back into the integral:

I=011+1+4x2dxI = \int_0^1 \frac{1 + \sqrt{1 + 4x}}{2} dx

We can factor out 12\frac{1}{2} and split the integral:

I=1201(1+1+4x)dxI = \frac{1}{2} \int_0^1 (1 + \sqrt{1 + 4x}) dx

I=12[011dx+01(1+4x)1/2dx]I = \frac{1}{2} \left[ \int_0^1 1 dx + \int_0^1 (1 + 4x)^{1/2} dx \right]

Evaluate each integral separately:

  1. 011dx=[x]01=10=1\int_0^1 1 dx = [x]_0^1 = 1 - 0 = 1

  2. 01(1+4x)1/2dx\int_0^1 (1 + 4x)^{1/2} dx

To integrate this, use a substitution. Let u=1+4xu = 1 + 4x. Then du=4dxdu = 4 dx, which means dx=14dudx = \frac{1}{4} du.

Change the limits of integration:

When x=0x = 0, u=1+4(0)=1u = 1 + 4(0) = 1.

When x=1x = 1, u=1+4(1)=5u = 1 + 4(1) = 5.

The integral becomes:

15u1/214du=1415u1/2du\int_1^5 u^{1/2} \frac{1}{4} du = \frac{1}{4} \int_1^5 u^{1/2} du

=14[u3/23/2]15= \frac{1}{4} \left[ \frac{u^{3/2}}{3/2} \right]_1^5

=14[23u3/2]15= \frac{1}{4} \left[ \frac{2}{3} u^{3/2} \right]_1^5

=16[u3/2]15= \frac{1}{6} [u^{3/2}]_1^5

=16(53/213/2)= \frac{1}{6} (5^{3/2} - 1^{3/2})

=16(551)= \frac{1}{6} (5\sqrt{5} - 1)

Now, substitute these results back into the expression for II:

I=12[1+16(551)]I = \frac{1}{2} \left[ 1 + \frac{1}{6} (5\sqrt{5} - 1) \right]

I=12[66+5516]I = \frac{1}{2} \left[ \frac{6}{6} + \frac{5\sqrt{5} - 1}{6} \right]

I=12[6+5516]I = \frac{1}{2} \left[ \frac{6 + 5\sqrt{5} - 1}{6} \right]

I=12[5+556]I = \frac{1}{2} \left[ \frac{5 + 5\sqrt{5}}{6} \right]

I=5+5512I = \frac{5 + 5\sqrt{5}}{12}

I=512(1+5)I = \frac{5}{12} (1 + \sqrt{5})

Comparing this result with the given options, it matches option C.